

mailto:nisshelp@ijis.org

http://niem.gov/niem/structures/2.0

http://niem.gtri.gatech.edu/iepd-ssgt/SSGT-GetProperty.do?propertyKey=no-33

http://www.w3.org/2001/XMLSchema
http://niem.gov/niem/appinfo/2.0
http://niem.gov/niem/structures/2.0
http://niem.gov/niem/appinfo/2.0

http://www.w3.org/2001/XMLSchema
http://niem.gov/niem/appinfo/2.0
http://niem.gov/niem/structures/2.0

http://www.w3.org/2001/XMLSchema.xsd

	Webb Roberts, Georgia Tech Research Institute
	Susan Liebeskind, Georgia Tech Research Institute
	Mark Kindl, Georgia Tech Research Institute
	This document specifies the data model, XML components, and XML data for use with the National Information Exchange Model (NIEM) version 2.0.
	This document is a specification for NIEM-conformant XML Schema documents, components, and instances. It represents the design that has evolved from the collaborative work of the NIEM Business Architecture Committee (NBAC) and the NIEM Technical Arc...
	This specification is a product of the NIEM Program Management Office (PMO).
	Send comments on this specification via email to nisshelp@ijis.org.
	Introduction
	Scope

	• The underlying NIEM data model
	• Guiding principles behind the design of NIEM
	• Rules for using XML Schema constructs in NIEM
	• Rules for modeling and structuring NIEM-conformant schemas
	• Rules for creating NIEM-conformant instances
	• Rules for naming NIEM components
	• Rules for extending NIEM-conformant components
	• A formal definition of the NIEM data model.
	Such a definition would focus on the Resource Definition Framework (RDF) and concepts not strictly required for interoperability. This document instead focuses on definition of schemas that work with the data model, to ensure translatability and int...
	• A detailed discussion of NIEM architecture and schema versioning.
	Such rules will be addressed in [ARCH].
	• The artifacts of the NIEM information exchange process.
	The artifacts of the NIEM information exchange process are discussed in [IEPD].
	Audience
	Document Conventions
	Document References
	Normative and Informative Content
	Formatting

	• xsd: identifies keywords from the W3C XML Schema Definition Language specification.
	• xsi: identifies keywords from the W3C XML Schema's XML Schema Instance specification.
	• structures: identifies keywords from the NIEM structures namespace.
	• appinfo: identifies keywords from the NIEM appinfo namespace.
	Terminology
	RFC 2119 Terminology
	XML Information Set Terminology

	• parent of an element (Element[parent])
	child of an element (Element[children])
	Note that the InfoSet properties “Element[parent]” and “Element[children]” correspond to a direct, immediate relationship with an element. Children of an element and their children, and so on, are collectively referred to as descendants of that elem...
	• element owning an attribute (Attribute[owner element])
	The owner of an attribute is the element that possesses or contains the attribute.
	XML Schema Terminology

	• XML Schema Part 1: Structures [XMLSchemaStructures]
	• XML Schema Part 2: Datatypes [XMLSchemaDatatypes]
	XML Namespace Terminology
	Document Organization

	• NIEM Conformance describes terminology, requirements, and artifacts related to NIEM conformance.
	• The NIEM Conceptual Model discusses the underlying semantic model for NIEM.
	• Guiding Principles discusses the principles that serve as the foundation of and guidelines for the rules.
	• Relation to Standards discusses the use of the key standards used in the development of NIEM.
	• XML Schema Design Rules discusses the rules for using XML Schema constructs in NIEM-conformant schemas.
	• Modeling Rules discusses the rules for the additional structures and constraints needed to build NIEM-conformant schemas.
	• XML Instance Rules discusses the rules for NIEM-conformant XML instance documents.
	• Naming Rules discusses the rules used in naming NIEM-conformant data components.
	• A brief, non-normative overview of NIEM.
	• Indexes of principles, rules, and definitions.
	• Discussion and full listings of the NIEM 2.0 supporting schemas (structures and appinfo).
	• An itemized listing of the NIEM 2.0 reference schemas.
	• References to external standard documents.
	NIEM Conformance
	Conformance Targets Overview
	Reference Schemas

	• It is explicitly designated as a reference schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It provides the broadest, most fundamental definitions of components in its namespace.
	• It provides the authoritative definition of business semantics for components in its namespace.
	• It is intended to serve as the basis for components in IEPD schemas, including subset schemas, constraint schemas, extension schemas, and exchange schemas.
	• It satisfies all rules specified in the Naming and Design Rules for reference schemas.
	• All rules in Section 5
	• All rules in Section 6, except [Rule 6-20] through [Rule 6-22] and [Rule 6-57]
	• All rules in Section 7, except [Rule 7-69] and [Rule 7-70]
	• [Rule 8-7]
	• All rules in Section 9
	IEPD Subset Schemas

	• It is explicitly designated as a subset schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It has a target namespace previously defined by a reference schema. That is, it does not provide original definitions for schema components, but instead provides an alternate schema representation of components that are defined by a reference schema.
	• It does not alter the business semantics of components in its namespace. The reference schema defines these business semantics.
	• It is intended to express the limited vocabulary necessary for an IEPD and to support XML Schema validation for an IEPD.
	• It satisfies all rules specified in the Naming and Design Rules for subset schemas.
	• All rules in Section 5, except [Rule 5-4]
	• All rules in Section 6, except [Rule 6-16], [Rule 6-20] through [Rule 6-22], [Rule 6-26], [Rule 6-27], [Rule 6-46], [Rule 6-47], [Rule 6-49] through [Rule 6-51], [Rule 6-53], [Rule 6-55], and [Rule 6-57]
	• In Section 7, [Rule 7-2], [Rule 7-3], [Rule 7-37], [Rule 7-38], [Rule 7-40], [Rule 7-42] through [Rule 7-44], [Rule 7-47], [Rule 7-48], [Rule 7-51] through [Rule 7-53], [Rule 7-55]
	• All rules in Section 9
	IEPD Extension Schemas and Exchange Schemas

	• It is explicitly designated as an extension schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It provides the broadest, most fundamental definitions of components in its namespace.
	• It provides the authoritative definition of business semantics for components in its namespace.
	• It contains components that, when appropriate, use or are derived from the components in reference schemas or exchange schemas. When a reference schema contains relevant components, it is preferred to an exchange schema.
	• It is intended to express the additional vocabulary required for an IEPD, above and beyond the vocabulary available from reference schemas, and to support XML Schema validation for an IEPD.
	• It satisfies all rules specified in the Naming and Design Rules for extension schemas.
	• It is explicitly designated as an exchange schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It provides the broadest, most fundamental definitions of components in its namespace.
	• It provides the authoritative definition of business semantics for components in its namespace.
	• It contains components that use or are derived from the components in reference schemas or exchange schemas.
	• It is intended to identify and define the document element information item for a particular information exchange that is described by an IEPD.
	• It satisfies all rules specified in the Naming and Design Rules for exchange schemas.
	• All rules in Section 5
	• All rules in Section 6, except [Rule 6-11], [Rule 6-18], [Rule 6-19], [Rule 6-29] through [Rule 6-31], [Rule 6-53], and [Rule 6-55]
	• All rules in Section 7, except [Rule 7-69] and [Rule 7-70]
	• [Rule 8-7]
	• All rules in Section 9
	IEPD Constraint Schemas

	• It is explicitly designated as a constraint schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It contains XML Schema components that exist for the purpose of (1) determining schema-validity of XML documents according to some criteria not easily expressed in other classes of schema documents, and (2) expressing those criteria in the XML Schem...
	• It has a target namespace previously defined by a reference schema, extension schema, or exchange schema, or it is intended to support a constraint schema that does have such a target namespace.
	• It is intended to express business rules for a class of XML documents, not the semantics of those XML documents.
	• It satisfies all rules specified in the Naming and Design Rules for constraint schemas.
	• In Section 5, [Rule 5-1] through [Rule 5-3]
	• In Section 6, [Rule 6-33], [Rule 6-34], and [Rule 6-35] through [Rule 6-38]
	• In Section 7, [Rule 7-2] and [Rule 7-3]
	NIEM-Conformant XML Documents and Elements

	• The document element is locally schema-valid.
	• Each element information item within the XML document that has a namespace name matching the target namespace of a reference schema, extension schema, or exchange schema is a NIEM-conformant element information item.
	• Its namespace name and local name matches an element declared by a reference schema, extension schema, or exchange schema.
	• It occurs within a NIEM-conformant XML document.
	• It is locally schema-valid.
	• It satisfies all rules specified in the Naming and Design Rules for NIEM-conformant element information items.
	• In Section 7, [Rule 7-55]
	• All rules in Section 8
	The NIEM Conceptual Model
	• NIEM's conceptual model is defined by a recognized standard.
	• NIEM's conceptual model is very well defined.
	• NIEM's conceptual model provides a consistent basis for relating attributes, elements, types, and other XML Schema components.
	• NIEM's use of the RDF model defines what a set of NIEM data means. The RDF specification provides a detailed description of what a statement means (see [RDFSemantics]), and this is leveraged by NIEM.
	• NIEM's use of the RDF model provides a basis for inferencing and reasoning about XML data that uses NIEM. That is, using the rules defined for the RDF model, programs can determine implications of relationships between NIEM-defined objects.
	• NIEM and the RDF Model
	• NIEM Properties
	• Unique Identification of Data Objects
	• NIEM Data Model Is Explicit, Not Implicit
	• NIEM Data Model Implementation in XML Schema
	NIEM and the RDF Model

	• A NIEM object or association is an instance of a complex type defined by an XML Schema document.
	• The XML Schema document that defines a NIEM object is a NIEM-conformant schema.
	• An assertion that an object exists. An occurrence of an element commonly establishes the existence of an object. Such an object may be tangible or intangible. For example, the element nc:Person in an exchange implies that a person does or did e...
	Descriptions of objects may carry an implicit assumption that objects exist. Such an assumption is dependent on the message in which such descriptions are made. If an object that is described does not exist, it should be made explicit in the defini...
	• An assertion that an object has a characteristic. A feature or quality of an object is commonly represented by an element appearing within the element that establishes the object. For example, the height of a person is described by the nc:PersonHe...
	• An assertion that an object participates in a relationship. A relationship between objects may be established in any of several ways:
	• Both objects may be referenced from an association that establishes the relationship. Associations are also useful for expressing n-ary relationships, as well as relationships supported by additional data.
	• An element may occur within one object that indicates the relationship with the other object. This element may be either a content element or a reference element.
	The NIEM Core schema and some domain schemas have been normalized such that a minimum number of reference or content elements establish relationships. In these cases, use of an association is the more common method for establishing a relationship. ...
	NIEM Properties

	• The property itself: What relationship is being asserted? For example, the property may say that a weapon has a user, or that someone has hair of a particular color.
	• The subject: About what object is the property being asserted? This would be the weapon that has the user, or the person whose hair is being described.
	• The object: What is the value of the property, or with what other object does the relationship exist? This would be the person who is the user of the weapon or the person whose hair has the color brown.
	Unique Identification of Data Objects
	NIEM Data Model Is Explicit, Not Implicit
	NIEM Data Model Implementation in XML Schema

	Guiding Principles
	• Specification Guidelines
	• XML Schema Design Guidelines
	• Modeling Design Guidelines
	• Implementation Guidelines
	Specification Guidelines
	Keep Specification to a Minimum

	This specification SHOULD specify what is necessary for semantic interoperability and no more.
	Focus on Rules for Schemas

	This specification SHOULD focus on providing rules for specifying schemas.
	Use Specific, Concise Rules

	This specification SHOULD feature rules that are as specific, precise, and concise as possible.
	XML Schema Design Guidelines
	Disallow Content Modification With XML Processors

	The content of a NIEM-conformant data instance SHOULD NOT be modified by processing against XML Schema documents.
	Use XML Validating Parsers for Content Validation

	NIEM-conformant schemas and NIEM-conformant XML documents SHOULD use XML Schema validating parsers for validation of XML content.
	Validate for Conformance to Reference Schemas

	Systems that use NIEM-conformant data SHOULD mark as invalid data that does not conform to the rules defined by applicable XML Schema documents.
	Allow Multiple Schemas for XML Constraints

	Constraints on XML instances MAY be validated by multiple schema validation passes, using multiple schemas for a single namespace.
	Define One Reference Schema Per Namespace

	Each NIEM-conformant namespace SHOULD be defined by exactly one reference schema.
	Disallow Mixed Content

	NIEM-conformant schemas SHOULD NOT specify data that uses mixed content.
	Specify Types for All Constructs

	NIEM-conformant schemas SHOULD NOT use or define local or anonymous components, as they adversely affect reuse.
	Avoid Wildcards in Reference Schemas

	NIEM-conformant components SHOULD NOT incorporate wildcards unless absolutely necessary, as they hinder standardization by encouraging use of nonstandardized data rather than standardized data.
	Provide Default Reference Schema Locations

	Schema locations specified within NIEM-conformant reference schemas SHOULD be interpreted as hints and as default values by processing applications.
	Use Open Standards

	NIEM standards and schemas SHOULD leverage and enable use of other open standards.
	Modeling Design Guidelines
	Namespaces Enhance Reuse

	NIEM-conformant instances and schemas SHOULD reuse components from NIEM distribution schemas when possible.
	Example:
	A component SHOULD be identified by its local name together with its namespace. A namespace SHOULD be a required part of the name of a component. A component's local name SHOULD NOT imply a relationship to components with similar names from other n...
	Design NIEM for Extensibility

	NIEM-conformant schemas and standards SHOULD be designed to encourage and ease extension and augmentation by users and developers outside the standardization process.
	Implementation Guidelines
	Avoid Displaying Raw XML Data

	XML data SHOULD be designed for automatic processing. XML data SHOULD NOT be designed for literal presentation to people. NIEM standards and schemas SHOULD NOT use literal presentation to people as a design criterion.
	Leave Implementation Decisions to Implementers

	NIEM SHOULD NOT depend on specific software packages, software frameworks, or software systems for interpretation of XML instances.
	NIEM schemas and standards SHOULD be designed such that software systems that use NIEM may be built with a variety of off-the-shelf and free software products.
	Modeling Guidelines
	Documentation

	A data component definition SHOULD be drafted before the associated data element name is composed.
	Consistent Naming

	1. It is easier to determine the nature of a component when it has a name that conveys the meaning and use of the component.
	2. It is easier to find a component when it is named predictably.
	3. It is easier to create a name for a component when clear guidelines exist.
	Components in NIEM SHOULD be given names that are consistent with names of other NIEM components. Such names SHOULD be based on simple rules.
	Reflect the Real World

	Component definitions in NIEM-conformant schemas SHOULD reflect real-world concepts.
	Be Consistent

	Component definitions in NIEM-conformant schemas SHOULD have semantic consistency.
	Reserve Inheritance for Specialization

	Complex type definitions in NIEM-conformant schemas SHOULD use type inheritance only for specialization.
	Do Not Duplicate Definitions

	Multiple components with identical or undifferentiated semantics SHOULD NOT be defined. Component definitions SHOULD have clear, explicit distinctions.
	Keep It Simple

	NIEM-conformant schemas SHOULD have the simplest possible structure, content, and architecture consistent with real business requirements.
	Be Aware of Scope

	Components defined by NIEM-conformant schemas SHOULD be defined appropriate for their scope.
	Be Mindful of Namespace Cohesion

	XML namespaces defined by NIEM-conformant schemas SHOULD encapsulate data components that are coherent, consistent, and internally related as a set. A namespace SHOULD encapsulate components that tend to change together.
	Relation to Standards
	XML 1.0
	[Rule 5-1] (REF, SUB, EXT, CON)

	The schema MUST conform to XML as specified by [XML].
	Rationale
	XML is a well-known, commonly used W3C Recommendation. It is supported by a large number of commercial and open-source software tools. It is a simple, well-defined, semi-structured data format that is flexible enough to allow for easy extension. X...
	XML Namespaces
	[Rule 5-2] (REF, SUB, EXT, CON)

	The schema MUST conform to the specification for namespaces in XML, as defined by [XMLNamespaces] and [XMLNamespacesErrata].
	Rationale
	NIEM is designed to facilitate cross-domain data exchanges and interoperability. The ultimate scope of NIEM is anticipated to be quite large. The primary purpose of namespaces is to avoid naming conflicts, which for NIEM could become quite common, ...
	XML Schema
	[Rule 5-3] (REF, SUB, EXT, CON)

	The schema MUST conform to the W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes, as specified by [XMLSchemaStructures] and [XMLSchemaDatatypes].
	Rationale
	XML Schema has become the generally accepted schema language and is experiencing the most widespread adoption. Although other schema languages exist that offer their own advantages and disadvantages, the current approach is to base NIEM on XML Schema.
	ISO 11179, Part 4

	In a NIEM-conformant schema, a documented component is an XML Schema component that has an associated data definition. These schema components have a textual definition, so that the component may be well-understood. Schemas that do not document th...
	The data definition of a documented component is the content of the first occurrence of the element xsd:documentation, which is an immediate child of an occurrence of the element xsd:annotation, which is an immediate child of the element that defines...
	[Rule 5-4] (REF, EXT)

	Within a NIEM-conformant schema, the data definition provided for each documented component SHALL follow the requirements and recommendations for data definitions given by [ISO 11179 Part 4].
	Rationale
	To advance the goal of creating semantically rich NIEM-conformant schemas, it is necessary that data definitions be descriptive, meaningful, and precise. [ISO 11179 Part 4] provides standard structure and rules for defining data definitions. NIEM ...
	ISO 11179 Requirements
	ISO 11179 Recommendations
	ISO 11179, Part 5
	[Rule 5-5] (REF, SUB, EXT)

	A NIEM component name SHALL be formed by applying the informative guidelines and examples detailed in Annex A of [ISO 11179 Part 5], with exceptions as specified in this document, most notably those specified in Section 9, Naming Rules.
	Rationale
	The guidelines and examples of [ISO 11179 Part 5] provide a simple, consistent syntax for data names that captures context and thereby imparts a reasonable degree of semantic precision.
	Example:
	XML Schema Design Rules
	• Restrictions on XML Schema Constructs
	• xsd:schema Document Element
	• Namespace Imports
	• Annotations
	• Type Definitions
	• Additional Definitions and Declarations
	Restrictions on XML Schema Constructs
	No Mixed Content
	[Rule 6-1] (REF, SUB, EXT)

	Within the schema, an element xsd:complexType SHALL NOT own the attribute mixed with the value true.
	[Rule 6-2] (REF, SUB, EXT)

	Within the schema, an element declaration that is of complex content SHALL NOT own the attribute mixed with the value true.
	Rationale
	Mixed content allows the mixing of data tags with text. Languages such as XHTML use this syntax for markup of text. NIEM-conformant schemas define XML that is for data exchange, not text markup. Mixed content creates complexity in processing, defi...
	Well-defined markup languages exist outside NIEM and may be used with NIEM data. External schemas may include mixed content and may be used with NIEM. However, mixed content must not be defined by NIEM-conformant schemas in keeping with [Principle 9].
	No Notations
	[Rule 6-3] (REF, SUB, EXT)

	The schema SHALL NOT contain a reference to the type definition xsd:NOTATION or to a type derived from that type.
	[Rule 6-4] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:notation.
	Rationale
	XML Schema notations allow the attachment of system and public identifiers on fields of data. The notation mechanism does not play a part in validation of instances and is not supported by NIEM.
	No Schema Inclusion
	[Rule 6-5] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:include.
	Rationale
	Element xsd:include brings schemas defined in separate files into the current namespace. It breaks a namespace up into arbitrary partial schemas, which needlessly complicates the schema structure, making it harder to reuse and process, and also incr...
	Inclusion of schemas that do not have namespaces also complicates schema understanding. This inclusion makes it difficult to find the realization of a specific schema artifact and create aliases for schema components that should be reused. Inclusion...
	No Schema Redefinition
	[Rule 6-6] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:redefine.
	Rationale
	The xsd:redefine element allows an XML Schema document to restrict and extend components from a namespace, in that very namespace. Such redefinition introduces duplication of definitions, allowing multiple definitions to exist for components from a ...
	Wildcard Restrictions
	No Unconstrained Type Substitution
	[Rule 6-7] (REF, SUB, EXT)

	The schema SHALL NOT reference the type xsd:anyType.
	Rationale
	XML Schema has the concept of the "ur-type," a type that is the root of all other types. This type is realized in schemas as xsd:anyType.
	NIEM-conformant schemas must not use xsd:anyType, because this feature permits the introduction of arbitrary content (i.e., untyped and unconstrained data) into an XML instance. NIEM intends that the schemas describing that instance describe all cons...
	No Unconstrained Text Substitution
	[Rule 6-8] (REF, SUB, EXT)

	The schema SHALL NOT reference the type xsd:anySimpleType.
	Rationale
	XML Schema provides a restriction of the “ur-type,” which contains only simple content. This provides a wildcard for arbitrary text. It is realized in XML Schema as xsd:anySimpleType.
	NIEM-conformant schemas must not use xsd:anySimpleType because this feature is insufficiently constrained to provide a meaningful starting point for content definitions. Instead, content should be based on one of the more specifically defined simple ...
	Untyped Elements Must Be Abstract
	[Rule 6-9] (REF, SUB, EXT)

	Within the schema, an element declaration with the attribute name and without the attribute type MUST carry the attribute abstract with the value true.
	Rationale
	Untyped element declarations act as wildcards that may carry arbitrary data. By declaring such types abstract, NIEM allows the creation of type independent semantics without allowing arbitrary content to appear in XML instances.
	No Untyped Attributes
	[Rule 6-10] (REF, SUB, EXT)

	Within the schema, an attribute declaration with attribute name MUST carry the attribute type.
	Rationale
	Untyped XML Schema attributes allow arbitrary content, with no semantics. Attributes must have a type so that specific syntax and semantics will be provided.
	No Unconstrained Element Substitution
	[Rule 6-11] (REF, SUB)

	The schema SHALL NOT contain the element xsd:any.
	Rationale
	The xsd:any particle (see Model Group Restrictions for an informative definition of particle) provides a wildcard that may carry arbitrary content. The particle xsd:any may appear within constraint schemas, extension schemas, and exchange schemas.
	No Unconstrained Attribute Substitution
	[Rule 6-12] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:anyAttribute.
	Rationale
	The xsd:anyAttribute element provides a wildcard, where arbitrary attributes may appear. The element xsd:anyAttribute may appear within constraint schemas or within other schemas that are not NIEM-conformant, but it is prohibited in NIEM-conformant ...
	Component Naming Restrictions
	No Anonymous Type Definitions
	[Rule 6-13] (REF, SUB, EXT)

	Within the schema, any occurrence of the element xsd:complexType or xsd:simpleType MUST appear as an immediate child of the element xsd:schema.
	Rationale
	NIEM does not support anonymous types in NIEM-conformant schemas. All XML Schema "top-level" types (children of the document element) are required by XML Schema to be named. By requiring NIEM type definitions to be top level, they are forced to be n...
	No Local Element Declarations
	[Rule 6-14] (REF, SUB, EXT)

	Within the schema, any element declaration carrying the attribute name MUST appear as an immediate child of the document element xsd:schema.
	Rationale
	All schema components defined by NIEM-conformant schemas must be named, accessible from outside the defining schema, and reusable across schemas. Local element definitions provide named elements that are not reusable outside the context in which the...
	No Local Attribute Definitions
	[Rule 6-15] (REF, SUB, EXT)

	Within the schema, any attribute declaration owning the attribute name MUST appear as an immediate child of the document element xsd:schema.
	Rationale
	All schema components defined by NIEM-conformant schemas are named, accessible from outside the defining schema, and reusable across schemas. Local attribute definitions provide named attributes that are not reusable outside the context in which the...
	No Uniqueness Constraints
	[Rule 6-16] (REF, EXT)

	The schema SHALL NOT contain any of the elements xsd:unique, xsd:key, xsd:keyref, xsd:selector, or xsd:field.
	Rationale
	XML Schema provides NIEM with the ability to apply uniqueness constraints to schema-validated content. These mechanisms, however, establish relationships in a way that is very difficult to understand, extend, and keep consisent through schema reuse....
	Model Group Restrictions
	Restrictions on Particle Ordering
	[Rule 6-17] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:all.
	Rationale
	The element xsd:all provides a set of particles (e.g., elements) that may be included in an instance, in no particular order. This can greatly complicate processing and may be difficult to comprehend and satisfy.
	[Rule 6-18] (REF)

	The schema SHALL NOT contain the element xsd:choice.
	Rationale
	The element xsd:choice provides an exclusive set of particles, one of which may appear in an instance. This can greatly complicate processing and may be difficult to comprehend, satisfy, and reuse.
	The element xsd:choice may be used in extension and exchange schemas, as it presents a simple way for a schema writer to represent a set of optional content. It may also be used in subset schemas and constraint schemas to represent syntactic alterna...
	No Recursively Defined Model Groups
	[Rule 6-19] (REF, SUB)

	Within the schema, any immediate child of a model group xsd:sequence element MUST be one of xsd:annotation or xsd:element
	[Rule 6-20] (EXT)

	Within the schema, any immediate child of a model group xsd:sequence element MUST be one of xsd:annotation, xsd:element, xsd:choice, or xsd:any.
	[Rule 6-21] (EXT)

	Within the schema, any immediate child of a model group xsd:choice element MUST be one of xsd:annotation or xsd:element.
	[Rule 6-22] (EXT)

	The use of xsd:choice SHALL define syntax, structure, grouping, and cardinality of instances, but SHALL NOT define semantics. The semantics of a property within an xsd:choice SHALL be identical to the semantics of the property within an xsd:sequence.
	Rationale
	XML Schema provides the capability for model groups to be recursively defined. This means that a sequence may contain a sequence, and a choice may contain a choice. These rules are designed to keep content models simple, comprehensive, and reusable...
	Restrictions on Named Groups
	[Rule 6-23] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:group.
	Rationale
	NIEM does not allow groups of elements to be named other than as named complex types. A group in XML Schema creates a named entity that may be included in multiple types, and which consists of a sequence of or choice between element particles. The ...
	Particle Cardinality Restrictions
	[Rule 6-24] (REF, SUB, EXT)

	Within the schema, if the element xsd:sequence carries the attribute minOccurs, it MUST set the value for the attribute to 1.
	[Rule 6-25] (REF, SUB, EXT)

	Within the schema, if the element xsd:sequence carries the attribute maxOccurs, it MUST set the value of the attribute to 1.
	Rationale
	XML Schema allows each particle to specify cardinality (how many times the particle may appear in an instance). NIEM restricts the cardinality of xsd:sequence particles to exactly one, to ensure that content model definitions are defined in as straig...
	Discussion
	Note that the particle xsd:any is not allowed in reference schemas or subset schemas by [Rule 6-11]
	Note also that element declarations acting as a particle (particles formed by xsd:element) may have any cardinality; they are not restricted by this rule. Should a user desire the behavior that would be obtained from the use of special cardinalities...
	Block Substitution Restrictions

	1. An instance of this element declaration may not substitute an extended type.
	2. An instance of this element declaration may not substitute a restricted type.
	3. An instance of this element declaration may not substitute another element.
	[Rule 6-26] (REF, EXT)

	Within the schema, if an element declaration carries the attribute block, it MUST set the value for the attribute to the empty string.
	[Rule 6-27] (REF, EXT)

	Within the schema, if a complex type definition carries the attribute block, it MUST set the value for the attribute to the empty string.
	[Rule 6-28] (REF, SUB, EXT)

	Within the schema, if the document element xsd:schema carries the attribute blockDefault, it MUST set the value for the attribute to the empty string.
	Rationale
	Restriction of substitution options reduces capacity for reuse; thus, it is forbidden within NIEM-conformant schemas In particular, setting the block value at the schema level complicates understanding of component definitions.
	Final Value Restrictions
	[Rule 6-29] (REF, SUB)

	Within the schema, if a simple type definition carries the attribute final, it MUST set the value for the attribute to the empty string.
	[Rule 6-30] (REF, SUB)

	Within the schema, if a complex type definition carries the attribute final, it MUST set the value for the attribute to the empty string.
	[Rule 6-31] (REF, SUB)

	Within the schema, if an element declaration carries the attribute final, it MUST set the value for the attribute to the empty string.
	[Rule 6-32] (REF, SUB, EXT)

	Within the schema, if the document element xsd:schema carries the attribute finalDefault, it MUST set the value for that attribute to the empty string.
	Rationale
	Restriction of derivation options reduces capacity for reuse and so is forbidden within reference and subset schemas. As well, the use of finalDefault complicates understanding of schemas, so it is only allowed in constraint schemas.
	Default Value Restrictions
	[Rule 6-33] (REF, SUB, EXT, CON)

	Within the schema, any element xsd:element SHALL NOT carry the attribute default.
	[Rule 6-34] (REF, SUB, EXT, CON)

	Within the schema, any element xsd:attribute SHALL NOT carry the attribute default.
	Rationale
	The use of default values means that the act of validating a schema will insert a value into an XML instance where none existed prior to schema validation. Schema validation is for rejection of invalid instances, not for modifying instance content, ...
	xsd:schema Document Element
	[Rule 6-35] (REF, SUB, EXT, CON)

	Within the schema, the document element xsd:schema MUST carry the attribute targetNamespace.
	[Rule 6-36] (REF, SUB, EXT, CON)

	Within the schema, the value of the required attribute targetNamespace on the document element xsd:schema MUST match the production <absolute-URI> as defined by [RFC3986].
	Rationale
	Schemas without defined namespaces provide definitions that are ambiguous, in that they are not universally identifiable.
	Absolute URIs are the only universally meaningful URIs. URIs include both URLs and URNs. Finding the target namespace using standard XML Base technology is complicated and not specified by XML Schema. Relative URIs are not universally identifiable...
	Discussion
	The document element xsd:schema may contain optional attributes attributeFormDefault and elementFormDefault. The values of these attributes are immaterial to a NIEM-conformant schema, as each attribute defined by a NIEM-conformant schema must be de...
	[Rule 6-37] (REF, SUB, EXT, CON)

	Within the schema, the document element xsd:schema MUST carry the attribute version.
	[Rule 6-38] (REF, SUB, EXT, CON)

	Within the schema, the value of the required attribute version on the document element xsd:schema MUST NOT be an empty string.
	Rationale
	It is very useful to be able to tell one version of a schema from another. Apart from the use of namespaces for versioning, it is sometimes necessary to release multiple versions of schema documents. Such use might include:
	• Subset schemas and constraint schemas
	• Error corrections or bug fixes
	• Documentation changes
	• Contact information updates
	In such cases, a different value for the version attribute implies a different version of the schema. No specific meaning is assigned to specific version identifiers.
	Note that some of the above uses for the version attribute are not employed in management of NIEM Core and domain schemas. An author of an application schema or exchange may use the version attribute for these purposes within their schemas.
	Namespace Imports

	1. Is not the local namespace, and
	2. Is referenced from the schema.
	xsd:import Element Restrictions
	[Rule 6-39] (REF, SUB, EXT)

	Within the schema, the element xsd:import MUST carry the attribute namespace.
	[Rule 6-40] (REF, SUB, EXT)

	Within the schema, the value of the required attribute namespace owned by the element xsd:import MUST match the production <absolute-URI> as defined by [RFC3986].
	Rationale
	An import that does not specify a namespace is enabling reference to non-namespaced components. NIEM requires that all components have a defined namespace. It is important that the namespace declared by a schema be universally defined and unambiguo...
	[Rule 6-41] (REF, SUB, EXT)

	Within the schema, the element xsd:import MUST carry the attribute schemaLocation.
	Rationale
	An import that does not specify a schema location gives no clue to processing applications as to where to find an implementation of the namespace. Even though such a provided schema location may be overridden, it is important that an initial default...
	[Rule 6-42] (REF, SUB, EXT)

	Within the schema, the value of the required attribute schemaLocation carried by the element xsd:import MUST match either the production <absolute-URI> or the definition of "relative-path reference," as defined by [RFC3986].
	Rationale
	The default value may be specified either as absolute or relative URIs. Since URNs are not resolvable, they are inappropriate for use in schemaLocation. The requirement for conformance to "relative-path reference" is required to avoid the more obsc...
	[Rule 6-43] (REF, SUB, EXT)

	Within the schema, the value of the required attribute schemaLocation carried by the element xsd:import MUST be resolvable to a XML schema document file that is valid according to [XMLSchemaStructures] and [XMLSchemaDatatypes].
	Rationale
	The XML Schema specification requires that the object imported via xsd:import must be a schema document. This rule reinforces that requirement.
	Discussion
	Note that relative URI references are dereferenced from the location of the schema document performing the import, not from the location of an instance or other schema. Although NIEM distribution schemas use only relative URI references, that need n...
	Including XML Content From Other Namespaces

	1. Carrying attributes from other than the XML or XML Schema namespaces on an element in the XML Schema namespace.
	By the rules of XML Schema, any element may have attributes that are from other namespaces. These attributes do not participate in validation but may carry information useful to tools that process schemas.
	2. Adding content to the elements xsd:appinfo and xsd:documentation.
	XML Schema allows arbitrary XML content to be included within annotations. Such XML does not participate in validation but may communicate useful information to schema readers or processors.
	1. Some tools require imports of namespaces used within schemas and validate against those schemas.
	2. The definition and the validity of content within schemas should be clear.
	[Rule 6-44] (REF, SUB, EXT)

	Within the schema, when a namespace other than the XML namespace or the XML Schema namespace is used, it MUST be imported into the schema using the xsd:import element.
	Rationale
	This rule ensures that used namespaces have recognizable defining sources and that they will cooperate with existing tools.
	[Rule 6-45] (REF, SUB, EXT)

	Within the schema, when a namespace other than the XML namespace or the XML Schema namespace is used, its content MUST be valid with respect to the schema imported for that namespace.
	Rationale
	XML Schema does not address the schema-validity of content used for annotations or attributes on schema components. This rule ensures that content used in such a manner is schema-valid. This encourages interoperable data definitions and schema docu...
	Annotations
	[Rule 6-46] (REF, EXT)

	Within the schema, an element SHALL have at most one instance of an element xsd:annotation as an immediate child.
	Rationale
	XML Schema allows annotations to be added to components in a fairly loose manner: there may be multiple annotations, each of which may have multiple documentation or appinfo elements. This flexibility in the syntax provides no additional expressivit...
	Human-Readable Documentation
	[Rule 6-47] (REF, EXT)

	Within the schema, the content of the xsd:documentation element that constitutes the data definition of a component MUST be character information items as specified by [XMLInfoSet].
	Rationale
	According to the XML Schema specification, the content of xsd:documentation elements is intended for human consumption, whereas other structured XML content is intended for machine consumption. Therefore, the xsd:documentation element MUST NOT conta...
	See [SchemaForXMLSchema], the schema for XML Schema, as an example of documentation elements containing properly escaped XML elements.
	[Rule 6-48] (REF, SUB, EXT)

	XML comments SHALL not be used for persistent information about constructs within the schema.
	Rationale
	Since XML comments are not associated with any specific XML Schema construct, there is no standard way to interpret comments. As such, comments should be reserved for internal use, and XML Schema annotations should be preferred for meaningful inform...
	Machine-Readable Annotations
	[Rule 6-49] (REF, EXT)

	Within the schema, any immediate child of an xsd:appinfo element SHALL be an element information item or a comment information item.
	Rationale
	Application information elements are intended for automatic processing; thus they should contain machine-oriented data, XML.
	[Rule 6-50] (REF, EXT)

	Within the schema, any element that is an immediate child of an xsd:appinfo element SHALL be in a namespace.
	Rationale
	Use of default namespace is allowed, but content has to have a real namespace, and namespaces must be declared. The XML namespaces specification includes the concept of content not in a namespace. Non-namespaced data runs counter to the principle of...
	[Rule 6-51] (REF, EXT)

	Within the schema, an element in the XML Schema namespace MUST NOT occur as a descendant of any element xsd:appinfo.
	Rationale
	NIEM-conformant schemas are designed to be very easily processed. Although uses of XML Schema elements as content of xsd:appinfo elements could be contrived, it is not current practice and could seriously complicate the authoring of schema validator...
	Type Definitions
	Complex Type Definitions
	[Rule 6-52] (REF, SUB, EXT)

	Within the schema, the element xsd:complexType MUST have as an immediate child either the element xsd:complexContent or the element xsd:simpleContent.
	Rationale
	XML Schema provides shorthand to defining complex content of a complex type, which is to define the complex type with immediate children that specify elements, or other groups, and attributes. In the desire to normalize schema representation of type...
	Simple Content (CSC) Restrictions

	1. By extension of an existing CSC.
	2. By extension of an existing simple type.
	[Rule 6-53] (REF)

	Within the schema, the element xsd:simpleContent MUST have as an immediate child the element xsd:extension.
	Rationale
	This rule ensures that the definition of a CSC will use the XML Schema extension facility. This allows for the above cases while disallowing much more complicated syntactic options available in XML Schema.
	Note that the applicability of the above rule allows for use of xsd:restriction within xsd:simpleContent in subset schemas, extension schemas, and exchange schemas.
	[Rule 6-54] (REF, SUB, EXT)

	Within the schema, given an element xsd:simpleContent with a child xsd:extension owning an attribute base, if the attribute base has a value that resolves to the name of a simple type, then the element xsd:extension MUST have an immediate child eleme...
	This rule ensures that a CSC that is created as an immediate extension of a simple type adds the attributes required for specific NIEM linking mechanisms. The attribute group is required to be structures:SimpleObjectAttributeGroup by [Rule 6-59].
	This creates a pattern for CSC definition as follows:
	Complex Content (CCC) Restrictions

	1. By extension of an existing complex type (CCC or CSC).
	2. By extension of the type structure:ComplexObjectType.
	[Rule 6-55] (REF)

	Within the schema, the element xsd:complexContent MUST have as an immediate child the element xsd:extension.
	Rationale
	NIEM does not support, as conformant, the use of complex type restriction. NIEM defines a language, in which specific content is allowed. It does not specify messages that forbid content. Such restrictions may be performed in nonconformant schemas...
	Note that XML Schema requires use of the attribute base on xsd:extension.
	Note also that the applicability allows for the use of restriction in subset schemas, extension schemas, exchange schemas, and constraint schemas.
	[Rule 6-56] (REF, SUB, EXT)

	Within the schema, given an element xsd:complexContent with a child xsd:extension owning an attribute base, the attribute base MUST have a value that resolves to the name of one of the following:
	1. The type structures:ComplexObjectType.
	2. The type structures:MetadataType.
	3. The type structures:AugmentationType.
	4. A complex type that is a NIEM-conformant component.
	This rule ensures that a CCC has well-defined ancestry. In turn, this ensures that every CCC has well-defined semantics.
	[Rule 6-57] (EXT)

	Within the schema, given an element xsd:complexContent with a child xsd:restriction owning an attribute base, the attribute base MUST have a value that resolves to the name of a complex type that is a NIEM-conformant component.
	This ensures that a CCC defined through restriction has well-defined semantics.
	Additional Definitions and Declarations
	Element Declarations
	Attribute Declarations
	Attribute Group Definitions
	[Rule 6-58] (REF, SUB, EXT)

	Within the schema, any occurrence of the element xsd:attributeGroup MUST own an attribute ref.
	The only attribute group used in NIEM-conformant schemas is structures:SimpleObjectAttributeGroup, as established by rules [Rule 6-59] and [Rule 7-39]. Therefore, NIEM-conformant schemas do not define additional attribute groups.
	[Rule 6-59] (REF, SUB, EXT)

	Within the schema, the attribute ref owned by any element xsd:attributeGroup MUST have a value of a qualified name (possibly using the default namespace) that SHALL resolve to the namespace for the NIEM structures namespace and the local name SimpleO...
	The only attribute group used within NIEM-conformant schemas is structures:SimpleObjectAttributeGroup. Therefore, within a NIEM-conformant schema, only this attribute group can be referenced.
	Modeling Rules
	1. They provide support for connecting structural definitions to concepts.
	2. They provide base components from which to derive structural definitions.
	xsd:schema Document Element Restrictions
	[Rule 7-1] (REF, EXT)

	Within the schema, the document element xsd:schema MUST have application information appinfo:ConformantIndicator, with text content "true".
	Rationale
	The appinfo:ConformantIndicator element is how NIEM-conformant schemas indicate that they are, in fact, NIEM-conformant. Without such an indicator, conformance would have to be "guessed" by readers and processors.
	[Rule 7-2] (REF, SUB, EXT, CON)

	Two XML Schema documents SHALL have the same value for attribute targetNamespace carried by the element xsd:schema, if and only if they represent the same set of components.
	[Rule 7-3] (REF, SUB, EXT, CON)

	Two XML Schema documents SHALL have the same value for attribute targetNamespace carried by the element xsd:schema, and different values for attribute version carried by the element xsd:schema if and only if they are different views of the same set o...
	Rationale
	These rules embody the basic philosophy behind NIEM's use of namespaced components: A component is uniquely identified by its class (e.g. element, attribute, type), its namespace (a URI), and its local name (an unqualified string). Any two matching ...
	Annotations

	1. A text definition of each component. This describes what the component means. The term used in this specification for such a text definition is data definition.
	2. The structural definition of each component. This is made up of XML Schema component definitions, along with certain application information (appinfo).
	Human-Readable Documentation
	[Rule 7-4] (REF, EXT)

	Within the schema, any element xsd:complexType MUST be a documented component.
	[Rule 7-5] (REF, EXT)

	Within the schema, any element xsd:simpleType MUST be a documented component.
	[Rule 7-6] (REF, EXT)

	Within the schema, any element xsd:element that is an immediate child of an element xsd:schema MUST be a documented component.
	[Rule 7-7] (REF, EXT)

	Within the schema, any element xsd:attribute that is an immediate child of an element xsd:schema MUST be a documented component.
	[Rule 7-8] (REF, EXT)

	Within the schema, any element xsd:enumeration MUST be a documented component.
	[Rule 7-9] (REF, EXT)

	Within the schema, the document element xsd:schema MUST be a documented component.
	[Rule 7-10] (REF, EXT)

	Words or synonyms for the words within a data element definition SHALL NOT be reused as terms in the corresponding component name if those words dilute the semantics and understanding of, or impart ambiguity to, the entity or concept that the compone...
	[Rule 7-11] (REF, EXT)

	An object class SHALL have one and only one associated semantic meaning (i.e., a single word sense) as described in the definition of the component that represents that object class.
	[Rule 7-12] (REF, EXT)

	An object class SHALL NOT be redefined within the definitions of the components that represent properties or subparts of that entity or class.
	Rationale
	Data definitions should be concise, precise, and unambiguous without embedding additional definitions of data elements that have already been defined once elsewhere (such as object classes). [ISO 11179 Part 4] says that definitions should not be nes...
	[Rule 7-13] (REF, EXT)

	A data definition SHALL NOT contain explicit representational or data typing information such as number characters, type of characters, etc., unless the very nature of the component can be described only by such information.
	Rationale
	A component definition is intended to describe semantic meaning only, not representation or structure. How a component with simple content is represented is indicated through the representation term and further refined through constraints.
	[Rule 7-14] (REF, EXT)

	A component definition SHALL begin with a standard opening phrase that depends on the class of the component per Table 7-1: Standard Opening Phrases:
	A standard opening phrase based on component class helps to ensure consistent definitions that appropriate for the type of component item being defined. These opening phrases also provide a cue that facilitates recognition of the particular kind of ...
	Machine-Readable Annotations

	The appinfo namespace is the namespace represented by the URI "http://niem.gov/niem/appinfo/2.0".
	[Rule 7-15] (REF, EXT)

	The schema SHALL import the appinfo namespace.
	Rationale
	For uniformity, all NIEM-conformant schemas must import the appinfo namespace.
	A component is said to have application information of some element E when the root element that defines the component has an immediate child element xsd:annotation, which has an immediate child element xsd:appinfo, which has as an immediate child th...
	Deprecation

	In a particular NIEM-conformant namespace, a deprecated component is one whose use is not recommended, yet which is maintained in the schema for compatibility with previous versions of the namespace.
	[Rule 7-16] (REF, EXT)

	A component that is deprecated SHALL be indicated as such by the component having application information appinfo:Deprecated, with an attribute value with a value of true.
	Rationale
	Deprecation can allow version management to be more consistent; versions of schema may be incrementally improved without introducing validation problems and incompatibility. As XML Schema lacks a deprecation mechanism, NIEM defines such a mechanism.
	Indicating Conformance

	1. To indicate that a schema is conformant or that it represents a conformant namespace.
	2. To indicate that an imported schema is not conformant or represents a nonconformant namespace.
	Bases of Derived Components
	[Rule 7-17] (REF, EXT)

	Within the schema, the element appinfo:Base MAY be used in one of the following ways:
	1. By a type definition, to indicate the base type, or structures:Object or structures:Association.
	2. By an element declaration, to indicate the base element.
	The element appinfo:Base SHALL NOT be used for any other purpose.
	Rationale
	The appinfo:Base element is required to clarify semantics of types as object or association types, when such derivation is not otherwise derivable from the component definitions.
	[Rule 7-18] (REF, EXT)

	Within the schema, the element appinfo:Base SHALL indicate, by namespace and name, one of the following:
	1. A NIEM-conformant schema component.
	2. structures:Object.
	3. structures:Association.
	[Rule 7-19] (REF, EXT)

	Within the schema, an attribute appinfo:namespace owned by an element appinfo:Base SHALL have a value of either of the following:
	1. A namespace which is the target namespace of a NIEM-conformant schema.
	2. The structures namespace.
	[Rule 7-20] (REF, EXT)

	Within the schema, an element appinfo:Base that does not own an attribute appinfo:namespace SHALL refer to the target namespace of the schema in which it is used.
	[Rule 7-21] (REF, EXT)

	Within the schema, an element appinfo:Base SHALL own an attribute appinfo:name.
	[Rule 7-22] (REF, EXT)

	Within the schema, if an element appinfo:Base indicates a NIEM-conformant namespace, then the value of the attribute appinfo:name owned by the element appinfo:Base SHALL indicate a schema component in the indicated namespace.
	[Rule 7-23] (REF, EXT)

	Within the schema, if an element appinfo:Base indicates the structures namespace, then the value of the attribute appinfo:name owned by the element appinfo:Base SHALL have a value of one of the following:
	1. structures:Object.
	2. structures:Association.
	3. A schema component defined by the structures schema.
	Rationale
	Together, this set of rules establishes the element appinfo:Base as a reference to either a NIEM-conformant schema component or to a special NIEM component, which acts as the base for the containing schema component.
	Application of Constructs
	[Rule 7-24] (REF, EXT)

	Within the schema, the element appinfo:AppliesTo MAY be used in any of the following ways:
	1. To indicate a base type to which an augmentation may be applied.
	2. To indicate a base type to which a metadata type may be applied.
	The element appinfo:AppliesTo SHALL NOT be used for any other purpose.
	Rationale
	The appinfo:AppliesTo element is required to express constraints beyond those available within XML Schema. Use of this element allows advanced processing of instances and schemas for type safety.
	[Rule 7-25] (REF, EXT)

	Within the schema, the element appinfo:AppliesTo SHALL indicate a schema component by namespace and name.
	[Rule 7-26] (REF, EXT)

	Within the schema, an attribute appinfo:namespace owned by an element appinfo:AppliesTo SHALL indicate the namespace of the type to which appinfo:AppliesTo refers. The indicated namespace SHALL be defined by a NIEM-conformant schema.
	[Rule 7-27] (REF, EXT)

	Given that the element appinfo:AppliesTo refers to a type, the applicability described by the element SHALL be understood to be the indicated type or a type transitively derived from the indicated type.
	[Rule 7-28] (REF, EXT)

	Within the schema, an element appinfo:AppliesTo that does not carry an attribute appinfo:namespace SHALL refer to the target namespace of the schema in which it is used.
	[Rule 7-29] (REF, EXT)

	Within the schema, an element appinfo:AppliesTo SHALL carry an attribute appinfo:name. The value of this attribute SHALL indicate the local name of a schema component within the namespace specified by the element.
	Rationale
	Together, this set of rules establishes the element appinfo:AppliesTo as a reference to a NIEM-conformant schema component to which a NIEM construct may be applied.
	Targets of References
	[Rule 7-30] (REF, EXT)

	Within the schema, the element appinfo:ReferenceTarget SHALL identify the XML Schema type definition of an element information item to which an instance of a reference element may validly refer. The element appinfo:ReferenceTarget SHALL NOT be used ...
	This describes the meaning of a reference target. The term type definition is as used in [XMLSchemaStructures], in the PSVI (post-schema-validation infoset) definition for an element information item. The element appinfo:ReferenceTarget is require...
	[Rule 7-31] (REF, EXT)

	Within the schema, a reference element MUST have at most one instance of the element appinfo:ReferenceTarget.
	Rationale
	Content elements in XML Schema may have at most one type. This rule ensures that reference elements follow the same pattern.
	[Rule 7-32] (REF, EXT)

	Within the schema, the element appinfo:ReferenceTarget SHALL indicate a type definition schema component, by namespace and name.
	[Rule 7-33] (REF, EXT)

	Within the schema, an attribute appinfo:namespace carried by an element appinfo:ReferenceTarget SHALL indicate the namespace of the referenced schema component. The indicated namespace SHALL be defined by a reference or extension schema.
	[Rule 7-34] (REF, EXT)

	Within the schema, an element appinfo:ReferenceTarget that does not carry an attribute appinfo:namespace SHALL refer to the target namespace of the schema in which it is used.
	[Rule 7-35] (REF, EXT)

	Within the schema, an element appinfo:ReferenceTarget SHALL carry an attribute appinfo:name. The value of this attribute SHALL indicate the local name of a type definition schema component within the namespace specified by the element.
	Rationale
	Together, this set of rules establishes the element appinfo:ReferenceTarget as a reference to a NIEM-conformant type definition schema component that a reference element instance may reference.
	Simple Type Definitions
	[Rule 7-36] (REF, SUB, EXT)

	Within the schema, a simple type definition that uses xsd:list SHOULD NOT be defined if any member of the list requires a property or metadata that is different than other members of the list. All members of the list SHOULD have the same metadata, a...
	Rationale
	The members of a list are not individually addressable by NIEM metadata techniques. The members are also not individually addressable by properties; a property has a value of all the members of the list. NIEM provides no method for individually add...
	Complex Type Definitions
	[Rule 7-37] (REF, SUB, EXT)

	Within the schema, a complex type definition SHALL be one of the following classes of types:
	1. An object type.
	2. A role type.
	3. An association type.
	4. A metadata type.
	5. An augmentation type.
	6. An adapter type.
	Rationale
	This rule establishes the classes of NIEM complex types. It is a limited set, each class with distinct semantics.
	[Rule 7-38] (REF, SUB, EXT)

	Within the schema, an element MUST NOT be introduced more than once into the direct content of a type definition. This applies to content acquired through extension of base types. This does not apply to a base element or derived element to one prev...
	Rationale
	This rule ensures that sequences of elements are simple sequences. A type should not define, for example, a sequence of elements A, B, then A again. Definitions should define, instead, what elements may be included, and their cardinality. Specific...
	Object Types

	In a NIEM-conformant schema, an object type is a complex type definition, an instance of which asserts the existence of an object. An object type represents some kind of object: a thing with its own lifespan that has some existence. The object may...
	[Rule 7-39] (REF, EXT)

	Within the schema, an object type SHALL be a complex type definition that either constitutes a NIEM-conformant component or for which there exists a NIEM-conformant component of one of the following forms:
	1. Has simple content, is based on a simple type, and contains the attribute group structures:SimpleObjectAttributeGroup, and has application information appinfo:Base of structures:Object.
	2. Has complex content, and is based on complex type structures:ComplexObjectType, and has application information appinfo:Base of structures:Object.
	3. Is a complex type that is derived from an object type, which is defined according to this rule.
	Rationale
	Object types are at the core of NIEM. They are built in a uniform way, from a simple design pattern: they take one of the two "root" forms outlined above, or they are built from other object types, depending on whether they are of simple or complex...
	Role Types

	A role type is a type that represents a particular function, purpose, usage, or role of an object.
	In a NIEM-conformant schema, a RoleOf element is a reference element whose type is the base type of the role.
	[Rule 7-40] (REF, SUB, EXT)

	Within the schema, any element with a name beginning with the string RoleOf SHALL represent a base type, of which the containing type represents a role.
	Rationale
	A RoleOf element references its corresponding base element. The RoleOf label on the reference element ensures that a role object is distinguishable from other objects and its link to the associated base is also distinguishable from the additional pr...
	Association Types

	In a NIEM-conformant schema, an association type is a type that establishes a relationship between objects, along with the properties of that relationship. An association type provides a structure that does not establish existence of an object but i...
	In a NIEM-conformant schema, an association is an element whose type is an association type.
	[Rule 7-41] (REF, EXT)

	Within the schema, an association type SHALL be a complex type definition that either constitutes a NIEM-conformant component or for which there exists a NIEM-conformant component definition. The NIEM-conformant component definition SHALL have one o...
	1. Has complex content, is based on the complex type structures:ComplexObjectType, and has application information appinfo:Base of structures:Association.
	2. Is a complex type that is derived from an association type, which is defined according to this rule.
	Rationale
	Associations within reference schemas, extensions schemas, and exchange schemas are easily identifiable as such and have a commonly defined base type. For subset schemas, the NIEM-conformant definition may be located in a primary schema and then ide...
	[Rule 7-42] (REF, SUB, EXT)

	Given that an association type defines a relationship between a set of participants, within an association type definition, any element that represents a participant SHALL be a reference element.
	Rationale
	Associations are intended to relate objects defined elsewhere. They are not intended to carry content of participant objects.
	Metadata Types

	A metadata type describes data about data, that is, information that is not descriptive of objects and their relationships, but is descriptive of the data itself. It is useful to provide a general mechanism for data about data. This provides requir...
	Within a NIEM-conformant schema, a metadata element is an element whose type is a metadata type. There are specific limitations on the meaning of a metadata element in an instance; it does not establish existence of an object, nor is it a property o...
	[Rule 7-43] (REF, SUB, EXT)

	Within the schema, a metadata type SHALL contain elements appropriate for a specific class of data about data.
	[Rule 7-44] (REF, SUB, EXT)

	Within the schema, a metadata type and only a metadata type SHALL be derived directly from structures:MetadataType.
	Rationale
	A metadata type establishes a specific, named aggregation of data about data. Any type derived from structures:MetadataType is a metadata type. Metadata types should not be derived from other metadata types. Such metadata types should be used as i...
	[Rule 7-45] (REF, EXT)

	Within the schema, a metadata type MAY have application information appinfo:AppliesTo, indicating the NIEM-conformant object, association, or external adapter types to which the metadata applies.
	[Rule 7-46] (REF, EXT)

	Within the schema, a metadata type that does not have application information appinfo:AppliesTo MAY be applied to any object type, association type, or external adapter type.
	Rationale
	Metadata may be constrained to be applicable to only specific types, or it may be defined to be applicable to any type. The source of a piece of data and the security classification of a piece of data are examples of metadata that may be considered ...
	Augmentation Types

	An augmentation type is a complex type that provides a reusable block of data that may be added to object types or association types.
	An augmentation of a NIEM-conformant object type is a block of additional data added to an object type to carry additional data beyond that of the original object definition.
	[Rule 7-47] (REF, SUB, EXT)

	An augmentation type:
	1. SHALL be transitively derived from structures:AugmentationType.
	2. SHALL contain elements that represent properties to be applied to a base type.
	Rationale
	A base type is the type to which an augmentation is to be applied. An augmentation may be applied to any number of types. Base types are assigned by augmentation elements.
	[Rule 7-48] (REF, SUB, EXT)

	Within the schema, an augmentation element definition:
	1. SHALL have a type that is an augmentation type.
	2. SHALL use the substitutionGroup attribute such that it is transitively substitutable for the element structures:Augmentation.
	An element that is not an augmentation element SHALL NOT meet either of the above criteria.
	Rationale
	An augmentation is trivially identifiable as such. The use of the common structures:Augmentation element allows message builders to optionally delay specifying augmentations to be applied to a type until runtime.
	[Rule 7-49] (REF, EXT)

	Within the schema, an element definition for an augmentation element MAY contain one or more instances of the element structures:AppliesTo as application information to specify types to which the augmentation element applies.
	[Rule 7-50] (REF, EXT)

	Within the schema, an element definition for an augmentation element that does not contain any instances of the element structures:AppliesTo MAY be applied to any object or association type.
	Rationale
	These rules allow schema builders to establish applicability for augmentations. An augmentation may be applicable to specific types.
	Users who wish to apply an augmentation type to a given object type may do so by creating a new augmentation element, applicable to the object type.
	Component Usage
	[Rule 7-51] (REF, SUB, EXT)

	Any type definition referenced by a component within the schema MUST be from one of the following:
	1. The schema being defined.
	2. A namespace imported as NIEM-conformant.
	3. The XML Schema namespace.
	4. The structures namespace.
	Rationale
	NIEM-conformant schemas are based on other NIEM-conformant schemas and the supporting namespaces. This simplifies processing and understanding of data.
	[Rule 7-52] (REF, SUB, EXT)

	Any element declaration referenced by a component within the schema MUST be from one of the following:
	1. The schema being defined.
	2. A namespace imported as NIEM-conformant.
	3. The structures namespace.
	4. An external namespace, in accordance with the rules for external schemas as specified by this specification.
	[Rule 7-53] (REF, SUB, EXT)

	Any attribute declaration referenced by a component within the schema MUST be from one of the following:
	1. The schema being defined.
	2. A namespace imported as NIEM-conformant.
	3. The structures namespace.
	4. The XML namespace.
	5. An external namespace, in accordance with the rules for external schemas as specified by this specification.
	Rationale
	NIEM-conformant schemas are based on other NIEM-conformant schemas. All attributes and elements must be from NIEM-conformant schemas, the structures namespace, the XML namespace, or an external namespace. This applies to elements referenced for sub...
	NIEM Structural Facilities

	The structures namespace is the namespace represented by the URI "http://niem.gov/niem/structures/2.0".
	[Rule 7-54] (REF, EXT)

	The schema MUST import the NIEM structures namespace.
	Rationale
	For uniformity, all NIEM-conformant schemas must import the structures namespace.
	[Rule 7-55] (REF, SUB, EXT, INS)

	The schema or instance MUST use content within the NIEM structures namespace as specified in this document and ONLY as specified by this document.
	Rationale
	This rule further enforces uniformity and consistency by mandating use of the NIEM structures namespace as is, without modification. Users are not allowed to insert types, attributes, etc. that are not specified by this document (the NDR).
	Sequence ID
	[Rule 7-56] (REF, SUB, EXT)

	Within the schema, a complex type definition SHALL include the attribute structures:sequenceID if the order of an occurrence of the type, within its parent, relative to its siblings, is meaningful and pertinent and if the schema does not specify the ...
	Rationale
	This rule indicates that, if order is meaningful and the schema will not always represent the desired order, then data modelers need to include sequenceID to allow the proper order to be represented in instances.
	Reference Elements

	1. Data objects are expressed as XML elements.
	2. XML elements contain attributes and other elements.
	• Circular relationships. For example, suppose that object 1 has a relationship to object 2 and object 2 has a relationship to object 1. Expressed via containment, this relationship would result in infinite recursive descent.
	• Repeated relationships. For example, suppose object 1 has a relationship to object 2 and object 3 has a relationship to object 2. Expressed via containment, this would result in a duplicate of object 2.
	A reference element is an element that refers to its value by a reference attribute instead of carrying it as content.
	[Rule 7-57] (REF, SUB, EXT)

	Within the schema, a reference element and only a reference element SHALL be defined to be of type structures:ReferenceType.
	Rationale
	Reference elements must be of the reference type, and elements of the reference type must be reference elements. This rule ensures that users always create reference elements using structures:ReferenceType and cannot use structures:ReferenceType for...
	[Rule 7-58] (REF, SUB, EXT)

	Within the schema, a complex type SHALL NOT be defined such that an instance of that type owns the attribute structures:ref.
	Rationale
	The use of references is limited to reference elements. This constrains the semantics and syntax of references within NIEM instances. Only structures:ReferenceType may use structures:ref, which is the only means for referencing within NIEM-conforma...
	[Rule 7-59] (REF, SUB, EXT)

	Within the schema, any two elements of the form
	NCName
	and
	NCNameReference
	where the string value of NCName is the same in both forms, SHALL be defined to have identical semantics. NIEM recognizes no difference in meaning between a reference element and an element that is not a reference element.
	Rationale
	NIEM-conformant data instances may use concrete data elements and reference elements as needed, to represent the meaning of the fundamental data. There is no difference in meaning between reference and concrete data representations. The two differe...
	Assertions that indicate "included" data is intrinsic, while referenced data is extrinsic, are not valid and are not applicable to NIEM-conformant data instances and data definitions.
	[Rule 7-60] (REF, EXT)

	Within the schema, if both elements NCName and NCNameReference exist, then the appinfo:ReferenceTarget of any NCNameReference element MUST be the type of the element NCName.
	Rationale
	By [Rule 7-59], any such pair of elements, NCName and NCNameReference, will have identical semantics. This rule ensures that an NCNameReference element is documented to refer to the appropriate type (the type of the corresponding NCName element) and...
	Using External Schemas

	An external schema is any schema that is not a supporting schema and that is not NIEM-conformant.
	[Rule 7-61] (REF, EXT)

	Within the schema, an element xsd:import that imports a namespace defined by an external schema MUST have the application information appinfo:ConformantIndicator, with a value of false.
	Rationale
	Knowledge of the conformance of an imported schema allows processors to understand the semantics of referenced components, without additional processing. Namespaces imported into NIEM-conformant schemas are assumed to be conformant unless otherwise ...
	[Rule 7-62] (REF, EXT)

	Within the schema, an element xsd:import that imports a namespace defined by an external schema MUST be a documented component.
	Rationale
	A NIEM-conformant schema has well-known documentation points. Therefore, a schema that imports a NIEM-conformant namespace need not provide additional documentation. However, when an external schema is imported, appropriate documentation must be pr...
	An adapter type is a NIEM-conformant type that adapts external components for use within NIEM. An adapter type creates a new class of object that embodies a single concept composed of external components. A NIEM-conformant schema defines an adapter...
	[Rule 7-63] (REF, EXT)

	Within the schema, an adapter type MUST have application information appinfo:ExternalAdapterTypeIndicator with a value of true. A type that is not an adapter type SHALL NOT contain that indicator.
	Rationale
	This rule flags as external adapters those types that may contain external content. This allows for easier processing.
	[Rule 7-64] (REF, SUB, EXT)

	Within the schema, an adapter type MUST be an immediate extension of type structures:ComplexObjectType.
	Rationale
	The adapter type must contain the content defined for any NIEM component. The type structures:ComplexObjectType provides such content
	[Rule 7-65] (REF, SUB, EXT)

	Within the schema, an adapter type MUST be composed of only elements and attributes from an external standard.
	Rationale
	An adapter type should contain the information from an external standard to express a complete concept. This expression should be composed of content entirely from an external schema. Most likely, the external schema will be based on an external st...
	[Rule 7-66] (REF, EXT)

	Within the schema, an element reference used in an adapter type definition MUST be a documented component.
	[Rule 7-67] (REF, EXT)

	Within the schema, an attribute reference used in an adapter type definition MUST be a documented component.
	Rationale
	In normal (conformant) type definition, a reference to an attribute or element is a reference to a documented component. Within an adapter type, the references to the attributes and elements being adapted are references to undocumented components. ...
	[Rule 7-68] (REF, SUB, EXT)

	Within the schema, an adapter type MUST NOT be extended or restricted.
	Rationale
	Adapter types are meant to stand alone; each type expresses a single concept from an external schema, and adapter types are maintained in separate schemas that only contain adapter types. In this way, processors may easily switch modes, processing NI...
	NIEM Subset Schemas
	[Rule 7-69] (SUB)

	The value of the targetNamespace attribute owned by the xsd:schema document element of the subset schema must be the same as the value of the targetNamespace attribute owned by the xsd:schema document element of the reference schema.
	[Rule 7-70] (SUB)

	The schema must be constructed such that any instance that is XML Schema valid against the schema must also be XML Schema valid against the base schema.
	Rationale
	A subset schema is a briefer, abridged form of its base schema. The subset schema is intended to stand in the place of the base schema for the purpose of XML Schema validation in many situations. As such, it is imperative that the subset schema sus...
	Container Elements

	XML Instance Rules
	Instance Validation
	[Rule 8-1] (INS)

	The XML document MUST be schema-valid, assessed with reference to the schema composed of the reference schemas, extension schemas, exchange schemas, utility schemas, and external schemas for the relevant namespaces.
	Rationale
	The schemas that define the exchange must be authoritative. Each is the reference schema, extension schema, or exchange schema for the namespace it defines. Application developers may use other schemas for various purposes, but for the purposes of ...
	This rule should not be construed to mean that XML validation must be performed on all XML instances as they are served or consumed; only that the XML instances validate if XML validation is performed. The XML Schema component definitions specify XM...
	Instance Meaning
	[Rule 8-2] (INS)

	Within the instance, the meaning of an element with no content is that additional properties are not asserted. There SHALL NOT be additional meaning interpreted for an element with no content.
	Rationale
	Elements without content only show a lack of asserted information. That is, all that is asserted is what is explicitly stated, through a combination of XML instance data and its schema. Data that is not present makes no claims. It may be absent du...
	Component Representation
	[Rule 8-3] (INS)

	Within an element instance, there SHALL NOT be any difference in meaning between a property asserted via element containment and a property asserted by element reference, except as explicitly described by the semantics of the elements involved.
	Rationale
	There is no difference in meaning between relationships established by containment and those established by reference. They are simply two mechanisms for expressing connections between objects. Neither mechanism implies that properties are intrinsi...
	[Rule 8-4] (INS)

	Given that the IDREF that is the value of an attribute structures:ref matches the value of an ID attribute on some element in the XML document, that ID attribute must be an occurrence of the attribute structures:id.
	Rationale
	This states that in NIEM-conformant content, structures:ref attributes must refer to structures:id attributes. By [XML], an IDREF is required to reference an ID. This rule ensures that the target of a reference is a NIEM ID for easier processing of...
	[Rule 8-5] (INS)

	Within an element instance, given that a reference element is restricted to a target type T, any attribute structures:ref MUST reference an element that has a type definition of type T or that is derived from type T.
	Rationale
	This rule says that the type of the object pointed to by a structures:ref attribute must be of a type specified by the reference element definition. The restriction of types is defined in the application information of the reference element definit...
	Component Ordering
	[Rule 8-6] (INS)

	The order of elements that are children of an element SHALL be presented as if their sequential order is as follows:
	1. First, elements owning an attribute structures:sequenceID, in the order that would be yielded with their sequence IDs sorted via sort element as defined by [XSLT], with a data type of number and an order of ascending.
	2. Following those elements, the remaining elements, in the order in which they occur within the XML instance.
	Rationale
	Because of NIEM's use of structured, defined types and its use of xsd:sequence, as well as various representation mechanisms, the order of data within an XML instance may require more precise definition and may vary from instance to instance. The tr...
	In this definition, the term "presented" may mean presentation to the user, reports, or transfer to other data systems. It is meaningful only when the order of appearance of items within a sequence is expressed. Such an order is only the default fo...
	[Rule 8-7] (REF, EXT, INS)

	Within a schema or instance, the attribute structures:sequenceID SHALL NOT be interpreted as meaningful beyond an indicator of sequential order of an object relative to its siblings.
	Rationale
	Siblings of a data item are items that have the same parent. Note that, using the reference and relationships mechanisms, data objects may have multiple parents. The sequenceID is truly metadata, helping to express the structure of the data rather ...
	Instance Metadata

	• Metadata m1 asserts Adam Barber gave the name.
	• Metadata m2 asserts the name and the birth date were reported on 4/26/2005.
	• Link metadata m3 asserts a 25% probability that the name goes with the person.
	• Metadata objects may appear outside the data they describe.
	• Metadata objects may be reused.
	• Data may refer to more than one metadata object.
	• Metadata pertains to an object or simple content, while link metadata pertains to the relationship between objects.
	[Rule 8-8] (INS)

	Within an element instance, when an object O links to a metadata object via an attribute structures:metadata, the information in the metadata object SHALL be applied to the object O.
	[Rule 8-9] (INS)

	Within an element instance, when an object O1 contains an element E, with content object O2 or with a reference to object O2, and O2 links to a metadata object via an attribute structures:linkMetadata, the information in the metadata object SHALL be ...
	Rationale
	These two rules define the meaning of metadata:
	• structures:metadata applies metadata to an object.
	• structures:linkMetadata applies metadata to a relationship between two objects.
	[Rule 8-10] (INS)

	Given that each IDREF in the value of an attribute structures:metadata must match the value of an ID attribute on some element in the XML document, that ID attribute MUST be an occurrence of the attribute structures:id.
	[Rule 8-11] (INS)

	Each element that an attribute structures:metadata references MUST have a type definition that is derived from structures:MetadataType.
	[Rule 8-12] (INS)

	Given that each IDREF in the value of an attribute structures:linkMetadata must match the value of an ID attribute on some element in the XML document, that ID attribute MUST be an occurrence of the attribute structures:id.
	[Rule 8-13] (INS)

	Each element that an attribute structures:linkMetadata references MUST have a type definition that is derived from structures:MetadataType.
	Rationale
	All structures:metadata and structures:linkMetadata attributes must refer to metadata objects, and the reference to that object must be established using the structures:id attribute, to facilitate processing of XML documents.
	[Rule 8-14] (INS)

	Given that an element information item E has a type definition of some type T, each metadata type that is the type definition of an element information item referenced by an attribute structures:metadata or structures:linkMetadata on element E MUST b...
	Rationale
	The applicability is determined by structures:AppliesTo application information of the metadata type definition. The instances must correspond to the types specified by the metadata type definition.
	Naming Rules
	Extension of XSD Namespace Simple Types
	[Rule 9-1] (REF, SUB, EXT)

	Within the schema, a complex type that is a direct extension of a simple type from the XML Schema namespace simple type MAY use the same local name as the simple type if and only if the extension adds no content other than the attribute group structu...
	Rationale
	It is useful to build complex type bases for further extension. The NIEM distribution proxy schema xsd.xsd provides complex type bases for some of the simple types in the XML Schema namespace. However, the complex types in this proxy schema reuse t...
	Usage of English
	[Rule 9-2] (REF, SUB, EXT)

	The name of any XML Schema component defined by the schema SHALL be composed of words from the English language, using the prevalent U.S. spelling, as provided by [OED].
	Rationale
	The English language has many spelling variations for the same word. For example, American English “program” has a corresponding British spelling “programme.” This variation has the potential to cause interoperability problems when XML components are...
	Characters in Names
	[Rule 9-3] (REF, SUB, EXT)

	The name of any XML Schema component defined by the schema SHALL contain only the following characters:
	• Upper-case letters ('A'-'Z').
	• Lower-case letters ('a'-'z').
	• Digits ('0'-'9').
	• Hyphen ('-').
	Other characters, such as the underscore ('_') character and the period ('.') character SHALL NOT appear in component names in NIEM-conformant schemas.
	[Rule 9-4] (REF, SUB, EXT)

	The hyphen character ('-') MAY appear in component names only when used as a separator between parts of a single word, phrase, or value, which would otherwise be incomprehensible without the use of a separator.
	Rationale
	Names of standards and specifications, in particular, tend to consist of series of discrete numbers. Such names require some explicit separator to keep the values from running together. The separator used within NIEM is the hyphen.
	Character Case
	[Rule 9-5] (REF, SUB, EXT)

	Within the schema, any attribute declaration SHALL have a name that begins with a lower-case letter ('a'-'z').
	[Rule 9-6] (REF, SUB, EXT)

	Within the schema, any XML Schema component other than an attribute declaration SHALL have a name that begins with an upper-case letter ('A'-'Z').
	[Rule 9-7] (REF, SUB, EXT)

	The name of any XML Schema component defined by the schema SHALL use the camel case formatting convention.
	Rationale
	The foregoing rules establish lowerCamelCase for all NIEM components that are XML attributes and UpperCamelCase for all NIEM components that are types, elements, or groups.
	Use of Acronyms and Abbreviations
	[Rule 9-8] (REF, SUB, EXT)

	The schema MUST consistently use approved acronyms, abbreviations, and word truncations within defined names. The approved shortened forms are defined in Table 9-1: Abbreviations Used in NIEM Core Names .
	Consistent, controlled, and documented abridged terms that are used frequently and/or tend to be lengthy can support readability, clarity, and reduction of name length.
	Word Forms
	[Rule 9-9] (REF, SUB, EXT)

	A noun used as a term in the name of an XML Schema component MUST be in singular form unless the concept itself is plural.
	[Rule 9-10] (REF, SUB, EXT)

	A verb used as a term in the name of an XML Schema component MUST be used in the present tense unless the concept itself is past tense.
	[Rule 9-11] (REF, SUB, EXT)

	Articles, conjunctions, and prepositions SHALL NOT be used in NIEM component names except where they are required for clarity or by standard convention.
	Rationale
	Articles (e.g., a, an, the), conjunctions (e.g., and, or, but), and prepositions (e.g., at, by, for, from, in, of, to) are all disallowed in NIEM component names, unless they are required. For example, PowerOfAttorneyCode requires the preposition. ...
	Name Generation
	[Rule 9-12] (REF, SUB, EXT)

	Except as specified elsewhere in this document, any element or attribute defined within the schema SHALL have a name that takes the form:
	• Object-class qualifier terms (0 or more).
	• An object class term (1).
	• Property qualifier terms (0 or more).
	• A property term (1).
	• Representation qualifier terms (0 or more).
	• A representation term (1).
	Rationale
	Consistent naming rules are helpful for users who wish to understand components with which they are unfamiliar, as well as for users to find components with known semantics. This rule establishes the basic structure for an element or attribute name,...
	Object-Class Term
	[Rule 9-13] (REF, SUB, EXT)

	The object-class term of a NIEM component SHALL consist of a term identifying a category of concrete concepts or entities.
	Rationale
	The object-class term indicates the object category that this data component describes or represents. This term provides valuable context and narrows the scope of the component to an actual class of things or concepts.
	Example
	Concept term: Activity
	Entity term: Vehicle
	Property Term
	[Rule 9-14] (REF, SUB, EXT)

	A property term SHALL describe or represent a characteristic or subpart of an entity or concept.
	Rationale
	The property term describes the central meaning of the data component.
	Qualifier Terms
	[Rule 9-15] (REF, SUB, EXT)

	Multiple qualifier terms MAY be used within a component name as necessary to ensure clarity and uniqueness within its namespace and usage context.
	[Rule 9-16] (REF, SUB, EXT)

	The number of qualifier terms SHOULD be limited to the absolute minimum required to make the component name unique and understandable.
	[Rule 9-17] (REF, SUB, EXT)

	The order of qualifiers SHALL NOT be used to differentiate names.
	Rationale
	Very large vocabularies may have many similar and closely related properties and concepts. The use of object, property, and representation terms alone is often not sufficient to construct meaningful names that can uniquely distinguish such component...
	Representation Term

	1. It can indicate the style of component. For example, types are clearly labeled with the representation term Type.
	2. It helps prevent name conflicts and confusion. For example, elements and types may not be given the same name.
	3. It indicates the nature of the value carried by element. Labeling elements and attributes with a notional indicator of the content eases discovery and comprehension.
	[Rule 9-18] (REF, EXT)

	If any word in the representation term is redundant with any word in the property term, one occurrence SHOULD be deleted.
	This rule, carried over from 11179, is designed to prevent repeating terms unnecessarily within component names. For example, this rule allows designers to avoid naming an element "PersonFirstNameName."
	[Rule 9-19] (REF, SUB, EXT)

	Within the schema, the name of an element declaration that is of simple content MUST use a representation term found in Table 9-2: Representation Terms.
	[Rule 9-20] (REF, SUB, EXT)

	Within the schema, the name of an element declaration that is of complex content, and that corresponds to a concept listed in Table 9-2: Representation Terms, MUST use a representation term from that table.
	[Rule 9-21] (REF, SUB, EXT)

	Within the schema, the name of an element declaration that is of complex content and that does not correspond to a concept listed in Table 9-2: Representation Terms MUST NOT use a representation term.
	[Rule 9-22] (REF, SUB, EXT)

	Within the schema, the name of an attribute declaration MUST use a representation term from Table 9-2: Representation Terms.
	Rationale
	An element that represents a value listed in the table should have a representation term. It should do so even if its type is complex with multiple parts. For example, a type with multiple fields may represent a sound binary, a date, or a name.
	NIEM Type Names
	All Type Components
	[Rule 9-23] (REF, SUB, EXT)

	Within the schema, the name of any type definition MUST use the representation term Type.
	Rationale
	Using the representation term Type immediately identifies XML types in a NIEM-conformant schema and prevents naming collisions with corresponding XML elements and attributes.
	Simple Type Components
	[Rule 9-24] (REF, SUB, EXT)

	Within the schema, the name of any simple type definition SHALL use the representation term qualifier Simple. This qualifier SHALL appear after any other representation term qualifiers.
	Rationale
	Specific uses of type definitions have similar syntax but very different effects on data definitions. Schemas that clearly identify complex and simple type definitions are easier to understand without tool support. This rule ensures that names of s...
	Code Type Components

	A code type is a simple type schema component definition that contains multiple xsd:enumeration facets.
	[Rule 9-25] (REF, SUB, EXT)

	Within the schema, the name of any code type SHALL use the representation term qualifier Code.
	Rationale
	Using the qualifier Code (e.g. CodeType, CodeSimpleType) immediately identifies a type as representing a fixed list of codes. These types may be handled in specific ways, as lists of codes are expected to have their own lifecycles, including version...
	[Rule 9-26] (REF, SUB, EXT)

	Within the schema, any type definition which has a base type definition of a code type or which is transitively based on a code type SHALL have a name that uses the representation term qualifier Code.
	Rationale
	This expands the use of the representation term qualifier Code to any type based on a code list.
	Association Type Components
	[Rule 9-27] (REF, SUB, EXT)

	Within the schema, any association type SHALL have a name that uses the representation term qualifier Association. Types other than association types SHALL NOT use the representation term qualifier Association.
	Rationale
	Using the qualifier Association immediately identifies a type as representing an association.
	Augmentation Type Components
	[Rule 9-28] (REF, SUB, EXT)

	Within the schema, any augmentation type SHALL have a name that uses the representation term qualifier Augmentation. Types other than augmentation types SHALL NOT use the representation term qualifier Augmentation.
	Rationale
	Using the qualifier Augmentation immediately identifies a type as representing an augmentation.
	Metadata Type Components
	[Rule 9-29] (REF, SUB, EXT)

	Within the schema, any metadata type SHALL have a name that uses the representation term qualifier Metadata. Types other than metadata types SHALL NOT use the representation term qualifier Metadata.
	Rationale
	Using the qualifier Metadata immediately identifies a type as representing metadata.
	NIEM Property Names
	Attribute Group Names
	[Rule 9-30] (REF, SUB, EXT)

	Within the schema, the name of any attribute group definition schema component SHALL use the representation term AttributeGroup.
	Rationale
	This clearly identifies attribute groups and partitions their names from the names of other types of schema components.
	Reference Names
	[Rule 9-31] (REF, SUB, EXT)

	Within the schema, the name of any reference element SHALL use the representation term suffix Reference.
	Rationale
	Reference elements are identical in semantics to elements that are not by reference. However, they refer to their values by a reference attribute instead of carrying it as content of the XML element. The use of a suffix helps indicate that the elem...
	Note that the use of the representation term suffix is one of the situations in which there is a slight divergence from the general rule for name generation as discussed in [Rule 9-12].
	Association Names
	[Rule 9-32] (REF, SUB, EXT)

	Within the schema, the name of an association element SHALL use the representation term qualifier Association.
	Rationale
	Using the qualifier Association immediately identifies an element as representing an association.
	Augmentation Names
	[Rule 9-33] (REF, SUB, EXT)

	Within the schema, the name of an augmentation element SHALL use the representation term Augmentation.
	Rationale
	Using the qualifier Augmentation immediately identifies an element as representing an augmentation.
	Metadata Names
	[Rule 9-34] (REF, SUB, EXT)

	Within the schema, the name of a metadata element SHALL use the representation term Metadata.
	Rationale
	Using the qualifier Metadata immediately identifies an element as representing metadata.
	Role Names
	[Rule 9-35] (REF, SUB, EXT)

	Within the schema, the name of a role SHALL use the property term RoleOf.
	Rationale
	Using the property term RoleOf immediately identifies an element as representing a role.
	NIEM Overview

	• NIEM reference schemas: Schemas containing content created or approved by the NIEM steering committees are periodically released in schema distributions. The structure and content of such distributions are not specified in this document. This doc...
	• NIEM support schemas: NIEM includes two special schemas, the appinfo and the structures schemas, for annotating and structuring NIEM-conformant schemas.
	• Extension Schema: a NIEM-conformant schema that adds domain- or application-specific content to the base NIEM model.
	• Exchange Schema: a NIEM-conformant schema that specifies a document in a particular exchange.
	• Subset Schema: a profile of a NIEM-conformant schema, derived from a reference schema, but which specifies instances that require only a portion of the reference schema.
	• Constraint Schema: a schema which adds additional constraints to NIEM-conformant instances, but which is assumed to validate in concert with existing NIEM-conformant or subset schemas. A constraint schema need not validate constraints that are app...
	Name Syntax for Special Components

	Table B-1: Name Syntax for Special Components
	Supporting Schemas

	The appinfo namespace
	Discussion
	The namespace for the appinfo namespace is http://niem.gov/niem/appinfo/2.0.
	Discussion
	The Resource element provides a method for application information to define a name within a schema, without the name being bound to a schema component. This is used by the structures schema to define names for structures:Object and structures:Assoc...
	Discussion
	The Deprecated element provides a method for identifying components as being deprecated. A deprecated component is one which is provided but whose use is not recommended.
	Discussion
	The Base element provides a mechanism for indicating base types and base elements in schema for the cases in which XML Schema mechanisms are insufficient. For example, it is used to indicate Object or Association bases.
	Discussion
	The ReferenceTarget element indicates a NIEM type which may be a target (that is, a destination) of a NIEM reference element. It may be used in combinations to indicate a set of valid types.
	Discussion
	The AppliesTo element is used in two ways. First, it indicates the set of types to which a metadata type may be applied. Second, it indicates the set of types to which an augmentation element may be applied.
	Discussion
	The ConformantIndicator element may be used in two ways. First, it is included as application information for a schema document element to indicate that the schema is NIEM-conformant. Second, it is used as application information of a namespace imp...
	Discussion
	The ExternalAdapterTypeIndicator element indicates that a complex type is an external adapter type. Such a type is one composed of elements and attributes from non-NIEM-conformant schemas. The indicator allows schema processors to switch to alterna...
	The structures schema
	Discussion
	The target namespace for the structures schema is http://niem.gov/niem/structures/2.0.
	Discussion
	The structures schema uses components from the appinfo namespace.
	Discussion
	The Object resource defines an identifier that acts as a conceptual base for objects in NIEM-conformant schemas.
	Discussion
	The Association resource defines an identifier that acts as a conceptual base for association in NIEM-conformant schemas.
	Discussion
	The id attribute is used to define XML IDs for NIEM objects. These IDs may be targets of reference elements, metadata attributes, and link metadata attributes.
	Discussion
	The linkMetadata attribute allows an element to point to metadata that affects the relationship between the context and the value of the object.
	Discussion
	The attribute metadata allows an object to point to metadata that affects itself.
	Discussion
	The ref attribute is used by reference elements in NIEM to refer to an object via an ID reference, rather than including the object itself as element content.
	Discussion
	The sequenceID attribute allows a series of elements to define a sequence for content that does not correspond to the order of element declarations within a type. This attribute may override the sequence of elements appearing within an instance.
	Discussion
	The SimpleObjectAttributeGroup attribute group provides a collection of attributes that are appropriate for definition of object types.
	Discussion
	The Augmentation element provides a substitution group head for augmentations. The designer of a message or object may use this element within an object definition. This will allow the selection of augmentations dynamically, at run time (or at leas...
	Discussion
	The Metadata element provides a substitution group head for metadata. Like the substitution group head for augmentations, this allows selection of metadata to be decided late in message creation, rather than at schema authoring time. This element m...
	Discussion
	The AugmentationType type is a base type for all augmentations. An augmentation may have metadata and an ID but may not have link metadata, as it does not establish a relationship between its value and its context. The individual element contents o...
	Discussion
	The ComplexObjectType type provides a base class for object definition, association definitions, and external adapter type definitions. An instance of one of these types may have an ID. It may have metadata as it establishes the existence of an obj...
	Discussion
	The MetadataType type is a base class for metadata type definition. This type provides only an ID, as the metadata may be referenced. It does not itself have metadata and does not have link metadata.
	Discussion
	The ReferenceType type is the type of all reference elements within NIEM-conformant schemas. This type provides a reference attribute to reference an object defined elsewhere. It includes an ID, as the link established by a reference element may ne...
	NIEM 2.0 Reference Schemas – Directory Listing
	References

	Basic concepts are covered at #basicconcepts.
	RDF data model is described at #section-data-model.
	EBNF notation is described at #sec-notation.
	IDREF constraint is described at #idref.
	NCName is described at #NT-NCName.
	Annotations are described at #Annotation_details.
	The element xsl:sort is described at #element-sort.
	List of Principles
	List of Definitions
	List of Rules
	Index
	Notices

