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1 Introduction 

This Naming and Design Rules (NDR) document specifies XML Schema documents for use with 
the National Information Exchange Model (NIEM).  NIEM is an information sharing framework 
based on the World Wide Web Consortium (W3C) Extensible Markup Language (XML) Schema 
standard.  In February 2005, the U.S. Departments of Justice (DOJ) and Homeland Security (DHS) 
signed a cooperative agreement to jointly develop NIEM by leveraging and expanding the Global 
Justice XML Data Model (GJXDM) into multiple domains.  NIEM is a result of a combined 
government and industry effort to improve information  interoperability and exchange within 
the United States at federal, state, tribal, and local levels of government.   

NIEM specifies a set of reusable information components for defining standard information 
exchange messages, transactions, and documents on a large scale:  across multiple communities 
of interest and lines of business.  These reusable components are rendered in XML Schema 
documents as type, element, and attribute definitions that comply with the W3C XML Schema 
specification. The resulting reference schemas are available to government practitioners and 
developers at http://niem.gov/.  

The W3C XML Schema standard enables information interoperability and sharing by providing a 
common language for describing data precisely.  The constructs it defines are basic metadata 
building blocks — baseline data types and structural components.  Users employ these building 
blocks to describe their own domain-oriented data semantics and structures, as well as 
structures for specific information exchanges and components for reuse across multiple 
information exchanges.  Rules that profile allowable XML Schema constructs and describe how 
to use them help ensure that those components are consistent and reusable. 

This document specifies principles and enforceable rules for NIEM data components and 
schemas.  Schemas and components that obey the rules set forth here are considered to be 
NIEM-conformant. 

1.1 Scope 

This document was developed to specify NIEM 2.0.  Later releases of NIEM may be specified by 
later versions of this document.  The document covers the following issues in depth: 

• The underlying NIEM data model 

• Guiding principles behind the design of NIEM 

• Rules for using XML Schema constructs in NIEM 

• Rules for modeling and structuring NIEM-conformant schemas 

• Rules for creating NIEM-conformant instances 

• Rules for naming NIEM components 

• Rules for extending NIEM-conformant components 
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This document does NOT address the following: 

• A formal definition of the NIEM data model.   

 Such a definition would focus on the Resource Definition Framework (RDF) and concepts 
not strictly required for interoperability.  This document instead focuses on definition of 
schemas that work with the data model, to ensure translatability and interoperability. 

• A detailed discussion of NIEM architecture and schema versioning. 

 Such rules will be addressed in [ARCH]. 

• The artifacts of the NIEM information exchange process. 

 The artifacts of the NIEM information exchange process are discussed in [IEPD]. 

This document is intended as a technical specification. It is not intended to be a tutorial or a 
user guide. A brief  NIEM overview is provided in Appendix A:  NIEM Overview. 

1.2 Audience 

This document targets  practitioners and developers who employ NIEM for information 
exchange and interoperability.  Such information exchanges may be between or within 
organizations.  The NIEM reference schemas provide system implementers much content on 
which to build specific exchanges.  However, there is a need for extended and additional 
content.  The purpose of this document is to define the rules for such new content so that it will 
be consistent with the NIEM reference schemas.  These rules are intended to establish and, 
more important, enforce a degree of standardization on a national level. 

1.3 Document Conventions 

This document uses formatting and syntactic conventions to clarify meaning and avoid 
ambiguity.   

1.3.1 Document References 

This document relies on references to many outside documents.  Such references are noted by 
bold, bracketed inline terms.  For example, a reference to RFC 2119 is shown as [RFC2119].  All 
reference documents are recorded in Appendix D:  References. 

1.3.2 Normative and Informative Content 

This document includes a variety of content.  Some content is normative (binding and 
enforceable in implementations), while other content is informative (explanatory, but not part 
of the NIEM specification).  In general, the informative material appears as supporting text and 
specific rationales for the normative material.   

Conventions used within this document include: 

[Definition: <term>] 

 A formal definition of a term associated with NIEM. 



NIEM  NIEM Naming and Design Rules 

  3 

 Definitions are normative. 

[Principle <number>] 

 A guiding principle for NIEM.   

 The principles represent the requirements, concepts, and goals that have helped shape the 
NIEM.  Principles are informative, not normative, but act as the basis on which the rules are 
defined. 

 Accompanying each principle is a short discussion section that justifies the application of the 
principle to NIEM design. 

 Principles are numbered in the order in which they appear in the document.   

[Rule <section>-<number>] (<applicability>) 

 An enforceable rule for NIEM.   

 Rules state specific requirements on artifacts, such as schemas and instances.  Most rules 
apply to conformant schemas, while others apply to instances.  The rules are normative.   

 Rules are stated using both XML InfoSet terminology (elements and attributes) and XML 
Schema terminology (schema components).  The choice of terminology is driven by which 
standard best expresses the rule.  Certain concepts are more clearly expressed using XML 
InfoSet information items, others using the XML Schema data model; still others are best 
expressed using a combination of terminology drawn from both standards. 

 Rules have rationales that justify the need for the rule. For clarity, there may be multiple 
rules that have the same rationale.  

 Rules and supporting text may use Extended Backus-Naur Form (EBNF) notation as defined 
by [XML].  

 Rules are numbered according to the section in which they appear and the order in which 
they appear within that section. For example, Rule 5-1 is the first rule in Section 5.   

 Each rule is accompanied by a description of its applicability.  This identifies the type of 
schema to which the rule applies or indicates whether the rule is applicable to XML 
documents or element information items.  Each entry in the list is a code from Table 2-1: 
Codes Representing Conformance Targets.  If a code appears in the applicability list for a 
rule, then the rule applies to the corresponding conformance target.  The conformance 
targets are defined in Section 2, NIEM Conformance. 

1.3.3 Formatting 

In addition to special formatting for definitions, principles, and rules, this document uses 
consistent formatting to identify NIEM components. 

Courier: All words appearing in Courier font are values, objects, keywords, or literal XML 
text. 
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Italics: All words appearing in italics, when not titles or used for emphasis, are special terms 
with definitions appearing in this document. 

Keywords: Keywords reflect concepts or constructs expressed in the language of their source 
standard. Keywords have been given an identifying prefix to reflect their source.  The following 
prefixes are used: 

• xsd: identifies keywords from the W3C XML Schema Definition Language specification. 

• xsi: identifies keywords from the W3C XML Schema's XML Schema Instance 
specification. 

• structures: identifies keywords from the NIEM structures namespace. 

• appinfo: identifies keywords from the NIEM appinfo namespace. 

Throughout the document, fragments of XML Schema or XML instances are used to clarify a 
principle or rule. These fragments are specially formatted in Courier font and appear in text 
boxes.   An example of such a fragment follows: 

Figure 1-1:  Example of an XML fragment 

<xsd:complexType name="PersonType"> 

  ... 

</xsd:complexType> 

1.4 Terminology 

This document uses standard terminology to explain the principles and rules that describe 
NIEM. 

1.4.1 RFC 2119 Terminology 

Within normative content (rules and definitions), the key words MUST, MUST NOT, REQUIRED, 
SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this 
document are to be interpreted as described in [RFC2119]. 

1.4.2 XML Information Set Terminology 

This document uses the concepts of element information items (“element”), attribute 
information items (“attribute”), and their associated properties as defined by [XMLInfoSet] with 
clarifications as discussed below.  Note that in the clarification that follows, the abstract 
property names appear in square brackets adjacent to the information items to which they 
belong.  For example, “Element[parent]” discusses the abstract property “parent” of the 
element information item. 

• parent of an element (Element[parent]) 

       child of an element (Element[children]) 

 Note that the InfoSet properties “Element[parent]” and “Element[children]” correspond 
to a direct, immediate relationship with an element.  Children of an element and their 



NIEM  NIEM Naming and Design Rules 

  5 

children, and so on, are collectively referred to as descendants of that element.  Parents 
of an element and their parents, and so on, are collectively referred to as ancestors of 
that element. 

• element owning an attribute (Attribute[owner element]) 

 The owner of an attribute is the element that possesses or contains the attribute. 

The use of the term document element from [XMLInfoSet] to describe the root of all elements 
in an XML document is preferred over the informal and nonstandard term root element. 

1.4.3 XML Schema Terminology  

The terms W3C XML Schema, XML Schema (upper case “Schema”), and XSD all refer to the XML 
Schema definition language, as specified in the two-part XML Schema specification: 

• XML Schema Part 1: Structures [XMLSchemaStructures] 

• XML Schema Part 2: Datatypes [XMLSchemaDatatypes] 

The term XML schema (lower case “schema”) refers to specific XML schema documents that 
conform to the XML Schema specifications listed above. 

The terms XML instance and XML document refer to an XML instance document, which is 
defined by and validates to a particular XML schema.  

The term schema component is defined in [XMLSchemaStructures]  as a building block for XML 
Schema.  This document refers to, rather than restates, the definitions of the different schema 
components associated with the XML Schema Abstract Data Model, which are defined in the 
XML Schema specification.  In this document, the name of the referenced schema component 
may appear without the suffix “schema component” (e.g., the term “complex type definition” 
may be used instead of “complex type definition schema component”) to enhance readability of 
the text. 

The term NCName is defined in [XMLSchemaDatatypes] and refers to XML noncolonized names, 
which are XML name strings that do not contain the “:” character.  

1.4.4 XML Namespace Terminology 

This document uses the concept of an XML Namespace as defined by [XMLNamespaces] and 
[XMLNamespacesErrata]. 

1.5 Document Organization 

This remainder of this document is organized into sections as follows:  

• NIEM Conformance describes terminology, requirements, and artifacts related to NIEM 
conformance. 

• The NIEM Conceptual Model discusses the underlying semantic model for NIEM. 

• Guiding Principles discusses the principles that serve as the foundation of and guidelines  
for the rules. 
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• Relation to Standards discusses the use of the key standards used in the development of 
NIEM. 

• XML Schema Design Rules  discusses the rules for using XML Schema constructs in NIEM-
conformant schemas. 

• Modeling Rules discusses the rules for the additional structures and constraints needed 
to build NIEM-conformant schemas. 

• XML Instance Rules  discusses the rules for NIEM-conformant XML instance documents.  

• Naming Rules discusses the rules used in naming NIEM-conformant data components.  

NOTE: The ordering of the sections is intended to minimize the number of forward references in 
the document.  For this reason, the naming rules appear as the last section of the document, so 
that the concepts being named have already been discussed. 

This document also contains appendices of reference material as follows: 

• A brief, non-normative overview of NIEM.  

• Indexes of principles, rules, and definitions. 

• Discussion and full listings of the NIEM 2.0 supporting schemas (structures and 
appinfo). 

• An itemized listing of the NIEM 2.0 reference schemas. 

• References to external standard documents. 

2 NIEM Conformance 

This Naming and Design Rules defines NIEM conformance.  This definition is performed through 
terminology definitions and rules.  Together, these define several classes of schemas, as well as 
defining conformance for XML instances of NIEM-conformant schemas.  These classes of 
schemas are defined, along with the definition of NIEM conformance for XML documents, in 
Section 2.1, Conformance Targets, below.  The schemas defined therein are NIEM-conformant 
schemas: 

[Definition: NIEM-conformant schema] 

 An XML Schema document is a NIEM-conformant schema if and only if it is a reference 
schema, a subset schema, an extension schema, an exchange schema, or a constraint 
schema. 

Neither constraint schemas nor subset schemas serve as the primary (cardinal) definitions for 
components they define.  The primary definitions come from reference schemas, exchange 
schemas, and extension schemas.  The XML Schema components defined by these schemas are 
NIEM-conformant components. 
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[Definition: NIEM-conformant component] 

 A NIEM-conformant component is an XML Schema component that is defined by a 
reference schema, an extension schema, or an exchange schema. 

The NIEM support schemas, structures  and appinfo, are considered part of the 
infrastructure of NIEM schemas and are not themselves considered to be NIEM-conformant 
schemas. 

2.1 Conformance Targets Overview 

The sections below define the conformance targets for this document.  Each rule in this 
document is applicable to one or more of the conformance targets.   

Throughout the document, each rule definition contains a list of applicable conformance targets 
(as described in Section 1.3.2, Normative and Informative Content, above).  The rule is binding 
for the targets on this list.  This list is normative.  This list uses the following codes: 

Table 2-1: Codes Representing Conformance Targets 

Code Conformance target 

REF Reference schemas 

SUB Subset schemas 

EXT Extension and exchange schemas 

CON Constraint schemas 

INS XML instance data 

Each section below provides a list of rules that apply to its conformance target.  These lists are 
informative, not normative.  The applicability of a rule to a conformance target is normatively 
specified by the applicability list contained in the rule definition. 

These conformance targets define the scope of the NDR.  Anything not on this list of 
conformance targets is explicitly not addressed. 

2.2 Reference Schemas 

A NIEM reference schema is a schema that is intended to be the authoritative definition schema 
for a NIEM namespace.  This includes the reference schemas for the NIEM Core schema and 
NIEM domain schemas.   

[Definition: reference schema] 

 A reference schema is an XML Schema document that meets all of the following criteria: 

• It is explicitly designated as a reference schema.  This may be declared by an IEPD 
catalog or by a tool-specific mechanism outside the schema. 

• It provides the broadest, most fundamental definitions of components in its 
namespace. 
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• It provides the authoritative definition of business semantics for components in its 
namespace. 

• It is intended to serve as the basis for components in IEPD schemas, including subset 
schemas, constraint schemas, extension schemas, and exchange schemas. 

• It satisfies all rules specified in the Naming and Design Rules for reference schemas. 

Any schema that defines components that are intended to be incorporated into NIEM Core or a 
NIEM domain may be defined as a reference schema.   

The rules for reference schemas are more stringent than are the rules for other classes of NIEM-
conformant schemas.  Reference schemas are intended to support the broadest reuse.  They are 
very uniform in their structure.  As they are the primary definitions for data components, they 
do not need to restrict other data definitions, and they are not allowed to use XML Schema's 
restriction mechanisms.  Reference schemas are intended to be as regular and simple as 
possible. 

The following rules apply to reference schemas: 

• All rules in Section 5 

• All rules in Section 6, except [Rule 6-20] through [Rule 6-22] and [Rule 6-57] 

• All rules in Section 7, except [Rule 7-69] and [Rule 7-70] 

• [Rule 8-7] 

• All rules in Section 9 

2.3 IEPD Subset Schemas 

[Definition: subset schema] 

 A subset schema is an XML Schema document that meets all of the following criteria: 

• It is explicitly designated as a subset schema.  This may be declared by an IEPD 
catalog or by a tool-specific mechanism outside the schema. 

• It has a target namespace previously defined by a reference schema.  That is, it does 
not provide original definitions for schema components, but instead provides an 
alternate schema representation of components that are defined by a reference 
schema. 

• It does not alter the business semantics of components in its namespace.  The 
reference schema defines these business semantics. 

• It is intended to express the limited vocabulary necessary for an IEPD and to support 
XML Schema validation for an IEPD. 

• It satisfies all rules specified in the Naming and Design Rules for subset schemas. 

A subset schema is based on another NIEM-conformant schema:  a reference schema.  A subset 
schema is defined such that any valid instance of the subset schema is also a valid instance of 
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the base (reference) schema.  This means that a subset schema is not allowed to introduce new 
content, nor is it allowed to extend the data content defined by a component of the reference 
schema. 

For example, a subset schema would not be allowed to introduce a new U.S. state (e.g., "West 
Michigan") into a list of states defined by the reference schema.  Any XML instance that 
included the new state would validate against the supposed subset schema but would not 
validate against the reference schema.  This would violate the basic premise underlying the use 
of subsets:  subsets must be as restrictive as or more restrictive than the reference schema. 

A subset schema may omit any construct of the base schema that has no effect on schema 
validation, including xsd:documentation and xsd:appinfo annotations.  The reference 
schema on which a subset schema is based is considered the authoritative source of such 
annotations. 

The following rules apply to subset schemas: 

• All rules in Section 5, except [Rule 5-4] 

• All rules in Section 6, except [Rule 6-16], [Rule 6-20] through [Rule 6-22], [Rule 6-26], 
[Rule 6-27], [Rule 6-46], [Rule 6-47], [Rule 6-49] through [Rule 6-51], [Rule 6-53], [Rule 6-
55], and [Rule 6-57] 

• In Section 7, [Rule 7-2], [Rule 7-3], [Rule 7-37], [Rule 7-38], [Rule 7-40], [Rule 7-42] 
through [Rule 7-44], [Rule 7-47], [Rule 7-48], [Rule 7-51] through [Rule 7-53], [Rule 7-55] 
through [Rule 7-59], [Rule 7-64], [Rule 7-65], [Rule 7-68] through [Rule 7-70] 

• All rules in Section 9 

2.4 IEPD Extension Schemas and Exchange Schemas 

[Definition: extension schema] 

 An extension schema is an XML Schema document that meets all of the following criteria: 

• It is explicitly designated as an extension schema.  This may be declared by an IEPD 
catalog or by a tool-specific mechanism outside the schema. 

• It provides the broadest, most fundamental definitions of components in its 
namespace. 

• It provides the authoritative definition of business semantics for components in its 
namespace. 

• It contains components that, when appropriate, use or are derived from the 
components in reference schemas or exchange schemas.  When a reference schema 
contains relevant components, it is preferred to an exchange schema.   

• It is intended to express the additional vocabulary required for an IEPD, above and 
beyond the vocabulary available from reference schemas, and to support XML 
Schema validation for an IEPD. 
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• It satisfies all rules specified in the Naming and Design Rules for extension schemas. 

[Definition: exchange schema] 

 An exchange schema is an XML Schema document that meets all of the following criteria: 

• It is explicitly designated as an exchange schema.  This may be declared by an IEPD 
catalog or by a tool-specific mechanism outside the schema. 

• It provides the broadest, most fundamental definitions of components in its 
namespace. 

• It provides the authoritative definition of business semantics for components in its 
namespace. 

• It contains components that use or are derived from the components in reference 
schemas or exchange schemas. 

• It is intended to identify and define the document element information item for a 
particular information exchange that is described by an IEPD. 

• It satisfies all rules specified in the Naming and Design Rules for exchange schemas. 

An extension schema in an IEPD serves several functions.  First, it defines new content within a 
new namespace, which may be an IEPD-specific namespace or a namespace shared by several 
IEPDs.  This content is NIEM-conformant but has fewer restrictions on it than do NIEM reference 
schemas.  Second, the extension schema bases its content on content from NIEM reference 
schemas, where appropriate.  Methods of deriving content include using (by reference) existing 
components, as well as creating extensions and restrictions of existing components. 

For example, an IEPD may create a type for an IEPD-specific phone number and base that type 
on a type defined by the NIEM Core reference schema.  This IEPD-specific phone number type 
may restrict the NIEM Core type to limit those possibilities that are permitted of the base type. 

IEPD extensions and restrictions must include annotations and documentation to be 
conformant, but they are allowed to use restriction, choice, and some other constructs that are 
not allowed in NIEM reference schemas. 

Note that IEPDs may define schemas that meet the criteria of reference schemas for those 
components that the IEPD wishes to nominate for inclusion in NIEM Core or in domains. 

The following rules apply to extensions and exchange schemas: 

• All rules in Section 5 

• All rules in Section 6, except [Rule 6-11], [Rule 6-18], [Rule 6-19], [Rule 6-29] through 
[Rule 6-31], [Rule 6-53], and [Rule 6-55] 

• All rules in Section 7, except [Rule 7-69] and [Rule 7-70] 

• [Rule 8-7] 

• All rules in Section 9 
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2.5 IEPD Constraint Schemas 

[Definition: constraint schema] 

 A constraint schema is an XML Schema document that meets all of the following criteria: 

• It is explicitly designated as a constraint schema.  This may be declared by an IEPD 
catalog or by a tool-specific mechanism outside the schema. 

• It contains XML Schema components that exist for the purpose of (1) determining 
schema-validity of XML documents according to some criteria not easily expressed in 
other classes of schema documents, and (2) expressing those criteria in the XML 
Schema definition language. 

• It has a target namespace previously defined by a reference schema, extension 
schema, or exchange schema, or it is intended to support a constraint schema that 
does have such a target namespace. 

• It is intended to express business rules for a class of XML documents, not the 
semantics of those XML documents. 

• It satisfies all rules specified in the Naming and Design Rules for constraint schemas. 

Constraint schemas provide a mechanism within an IEPD by which the IEPD may use the XML 
Schema definition language to describe business rules for NIEM-conformant reference schemas.  
A constraint schema need not express the complete syntax for any class of XML documents.  
Schema-validity should be assessed using reference or subset schemas as well as constraint 
schemas.   

A constraint schema is not assumed to be a definitive definition for the components it 
describes.  Instead, a constraint schema uses the XML Schema definition language to add 
constraints and restrictions to components defined by other schemas.   

A constraint schema may be used in tandem with a reference schema, extension schema, or 
exchange schema to enable validation of specific business rules.  Or, a broader constraint 
schema, which adds constraints to the rules defined by the reference schemas, may be defined 
for an IEPD.  Such a schema may be used as the sole yardstick for validation of the namespace, 
but combining IEPD constraints with the base schemas may make those constraints harder to 
understand and reuse later. 

Constraint schemas have far fewer requirements than other forms of schema.  As they are 
expected to work in tandem with normative schemas, they are allowed to use the XML Schema 
language however necessary to express business rules. 

The following rules apply to constraint schemas: 

• In Section 5, [Rule 5-1] through [Rule 5-3] 

• In Section 6, [Rule 6-33], [Rule 6-34], and [Rule 6-35] through [Rule 6-38] 

• In Section 7, [Rule 7-2] and [Rule 7-3] 
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2.6 NIEM-Conformant XML Documents and Elements 

This document has specific rules about how NIEM content should be used in XML documents.  
As well as containing rules for XML Schema documents, this NDR contains rules for NIEM-
conformant XML content at a finer granularity than the XML document. 

[Definition: NIEM-conformant XML document] 

 A NIEM-conformant XML document is an XML document that satisfies all of the following 
criteria: 

• The document element is locally schema-valid.   

• Each element information item within the XML document that has a namespace 
name matching the target namespace of a reference schema, extension schema, or 
exchange schema is a NIEM-conformant element information item. 

In this definition and the next definition below, the term XML document is as specified in [XML].  
The terms document information item, document element, element information item, 
namespace name, and local name are as specified in [XMLInfoSet].  The term valid is as 
specified in [XMLSchemaStructures]. 

Schema-validity may be assessed against a single set of schemas or against multiple sets of 
schemas.  Assessment against schemas is as directed by an IEPD, other instructions, or tools. 

Note that the document element (root element) of a NIEM-conformant XML document is not 
required to be a NIEM-conformant element information item.  Other specifications, such as the 
IEPD specification, may add additional constraints to these to specify IEPD or exchange 
conformance. 

[Definition: NIEM-conformant element information item] 

 A NIEM-conformant element information item is an element information item that satisfies 
all of the following criteria: 

• Its namespace name and local name matches an element declared by a reference 
schema, extension schema, or exchange schema. 

• It occurs within a NIEM-conformant XML document. 

• It is locally schema-valid. 

• It satisfies all rules specified in the Naming and Design Rules for NIEM-conformant 
element information items. 

Because each NIEM-conformant element information item must be locally schema-valid, each 
element must validate against the schema definition of the element, even if the element 
information item is allowed within the document because of a wildcard with 
processContents of "skip".  Within a NIEM-conformant XML document, each element 
that is from a NIEM namespace conforms to its schema specification. 

NDR rules apply to element information items with respect to the reference schemas for the 
relevant namespaces.  For example, when applying a rule concerning the applicability of an 
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augmentation element to a type, the definitions as specified in the reference schema are 
relevant, but definitions in other schemas, such as subset and constraint schemas, are not 
considered.  Such applicability is likely not indicated by subset and constraint schemas, but 
extension schemas are required to contain sufficient definitions for proper validation of NIEM-
conformant instances. 

The following rules apply to NIEM-conformant element information items: 

• In Section 7, [Rule 7-55] 

• All rules in Section 8 

3 The NIEM Conceptual Model 

The NIEM provides a concrete data model, in the form of a set of XML Schema documents.  
These schemas may be used to build messages and information exchanges.  The schemas spell 
out what kinds of objects exist and how those objects may be related.  XML data that follows 
the rules of NIEM imply specific meaning.  The varieties of XML Schema components used 
within NIEM-conformant schemas are selected to clarify the meaning of XML data.  That is, 
schema components that do not have a clear meaning have been avoided.  NIEM provides a 
framework within which XML data has a specific meaning.   

One limitation of XML and XML Schema is that they do not describe the meaning of an XML 
document.  The XML specification defines XML documents and defines their syntax but does not 
address the meaning of those documents.  The XML Schema specification defines the XML 
Schema definition language, which describes the structure and constrains the contents of XML 
documents (schemas).   

In a schema, the meaning of a schema component (e.g., element, attribute, or type) may be 
described using the xsd:documentation element.  Or, additional information may be 
included via the xsd:appinfo element.  Although this may enable humans to understand 
XML data, more information is needed to support the machine-understandable meaning of XML 
data.  In addition, inconsistency among the ways that schema components may be put together 
may be a source of confusion. 

The RDF Core Working Group of the World Wide Web consortium has developed a simple, 
consistent conceptual model, the RDF model.  The RDF model is described and specified 
through a set of W3C Recommendations, the Resource Description Framework (RDF) 
specifications, making it a very well-defined standard.  The NIEM model and the rules contained 
in this NDR are based on the RDF model.  This provides numerous advantages: 

• NIEM's conceptual model is defined by a recognized standard. 

• NIEM's conceptual model is very well defined. 

• NIEM's conceptual model provides a consistent basis for relating attributes, elements, 
types, and other XML Schema components. 
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• NIEM's use of the RDF model defines what a set of NIEM data means.  The RDF 
specification provides a detailed description of what a statement means (see 
[RDFSemantics]), and this is leveraged by NIEM.  

• NIEM's use of the RDF model provides a basis for inferencing and reasoning about XML 
data that uses NIEM.  That is, using the rules defined for the RDF model, programs can 
determine implications of relationships between NIEM-defined objects. 

With the exception of Section 2, NIEM rules are explained in this document without reference 
to RDF or RDF concepts.  Understanding RDF is not required to understand NIEM-conformant 
schemas or data based on NIEM.  However, understanding RDF concepts may deepen 
understanding of NIEM. 

The goal of this section is to clarify the meaning of XML data that is NIEM-conformant and to 
outline the implications of various modeling constructs in NIEM.  The rules for NIEM-
conformant schemas and instances are in place to ensure that a specific meaning can be derived 
from data.  That is, the data makes specific assertions, which are well understood since they are 
derived from the rules for NIEM. 

The key concepts underpinning the NIEM conceptual model are discussed in the remainder of 
this section: 

• NIEM and the RDF Model 

• NIEM Properties 

• Unique Identification of Data Objects 

• NIEM Data Model Is Explicit, Not Implicit 

• NIEM Data Model Implementation in XML Schema 

3.1 NIEM and the RDF Model 

NIEM has its foundation in the RDF model.  This helps to ensure that NIEM-conformant data has 
precise meaning.  The RDF view of what data means is clarified by [RDFSemantics]:  

 . . . asserting a sentence makes a claim about the world . . . an assertion amounts to 
stating a constraint on the possible ways the world might be. 

The RDF view of the meaning of data carries into NIEM: NIEM elements form statements that 
make claims about the world:  that a person has a name, a residence location, a spouse, etc.  
The assertion of one set of facts does not necessarily rule out other statements:  A person could 
have multiple names, could have moved, or could be divorced.  Each statement is a claim 
asserted to be true by the originator of the statement. 

This NDR discusses NIEM data in terms of objects, a term more accessible than the word used 
by RDF, resources.  RDF defines the world in terms of resources.  [RDFSemantics] describes 
what may constitute a resource:  
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 . . . no assumptions are made here about the nature of resources; "resource" is treated 
here as synonymous with "entity," i.e., as a generic term for anything in the universe of 
discourse. 

RDF resources coincide with NIEM objects and associations.  That is, both objects and 
associations in NIEM are RDF resources with the additional constraints: 

• A NIEM object or association is an instance of a complex type defined by an XML Schema 
document. 

• The XML Schema document that defines a NIEM object is a NIEM-conformant schema. 

NIEM associations are defined as n-ary properties as described in [N-ary], use case 3.  NIEM 
object types are defined in Section 7.4.1, Object Types.  NIEM associations are defined in 
Section 7.4.3, Association Types.  Assertions are made via NIEM-conformant XML data, 
described by Section 8, XML Instance Rules. 

The XML Schema types that define NIEM objects and associations are related to each other via 
elements and attributes.  That is, a type contains elements and attributes, and an element or 
attribute has a value that is an instance of an XML Schema type.  In NIEM, these elements and 
attributes are XML Schema representations of RDF properties, which are described by 
[RDFPrimer], "2.1 Basic Concepts": 

 "RDF is based on the idea that the things being described have properties which have 
values, and that resources can be described by making statements . . . that specify those 
properties and values." 

This describes how NIEM works: schemas describe things and their properties.  NIEM-
conformant data specifies objects, the values of their properties, and the relationships between 
them. 

There are several kinds of assertions that may be made with NIEM-conformant data.  Examples 
include: 

• An assertion that an object exists.   An occurrence of an element commonly establishes 
the existence of an object.  Such an object may be tangible or intangible.  For example, 
the element nc:Person  in an exchange implies that a person does or did exist.  An 
element may also express that an object does not exist (e.g., the license plate ABC123 
was never issued), but this is an uncommon case. 

 Descriptions of objects may carry an implicit assumption that objects exist.  Such an 
assumption is dependent on the message in which such descriptions are made.  If an 
object that is described does not exist, it should be made explicit in the definition of an 
element containing or referring to the object. 

• An assertion that an object has a characteristic.  A feature or quality of an object is 
commonly represented by an element appearing within the element that establishes the 
object.  For example, the height of a person is described by the 

nc:PersonHeightMeasure element.  The nc:PersonHeightMeasure 
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element occurs as XML content of the nc:Person element.  In some cases, a 
characteristic may be represented by an attribute owned by an element.    

• An assertion that an object participates in a relationship.  A relationship between 
objects may be established in any of several ways:   

• Both objects may be referenced from an association that establishes the 
relationship.  Associations are also useful for expressing n-ary relationships, as well 
as relationships supported by additional data.    

• An element may occur within one object that indicates the relationship with the 
other object.  This element may be either a content element or a reference element.   

 The NIEM Core schema and some domain schemas have been normalized such that 
a minimum number of reference or content elements establish relationships.  In 
these cases, use of an association is the more common method for establishing a 
relationship.  However, in an exchange, using a reference or content element to 
express a relationship may be the simpler, preferred method for expressing a 
relationship. 

3.2 NIEM Properties 

NIEM-conformant data describes characteristics of objects and relationships between objects.  
In RDF, these characteristics and relationships are called properties of objects, which is also how 
NIEM refers to them.  NIEM represents properties with element declarations and attribute 
declarations.   

Within data, a property relates XML data much as a verb relates nouns in a sentence:  a verb has 
a subject and an object. 

• The property itself: What relationship is being asserted?  For example, the property may 
say that a weapon has a user, or that someone has hair of a particular color. 

• The subject:  About what object is the property being asserted?  This would be the 
weapon that has the user, or the person whose hair is being described. 

• The object:  What is the value of the property, or with what other object does the 
relationship exist?  This would be the person who is the user of the weapon or the 
person whose hair has the color brown. 

A property relates two objects.  Data will describe an object having a characteristic with a 
specific value or will describe an object with a particular relationship to another object.  All 
properties are pair-wise:  between two objects, or between an object and a value.   

In theory, any relationship that involves more than two objects may be modeled as a set of 
binary properties.  In NIEM, such relationships may be expressed either as a set of properties 
(i.e., as element and attribute declarations) or as a complex type defining an association. 
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3.3 Unique Identification of Data Objects 

In NIEM, an exchange is generally ad hoc.  That is, a message may be generated without any 
persistence.  It exists only to exchange data and may not have any universal meaning beyond 
that specific exchange.  As such, a message may or may not have a URI as an identifier.  NIEM 
was designed with the assumption that a given exchange need not have any unique identifier; 
NIEM does not require a unique identifier.  NIEM also does not require any object (data 
instance) to be identified by a URI.  This differs from RDF, in which all entities (other than literal 
values) are identified by globally meaningful URIs. 

A NIEM-conformant instance uses XML IDs to identify objects within an XML document; The 
NIEM XML ID is an attribute structures:id of type xsd:ID.  These IDs are not assumed by 
NIEM to have any universal significance; they need only be unique within the XML document.  
The use of an ID is required only when an object must be referenced within the document.  
NIEM recognizes no correlation between these local IDs and any URI.   

Any given implementation, message, or IEPD may be defined to apply a URI or other universally 
meaningful identifier to an object or message.  However, NIEM has no such requirement. 

3.4 NIEM Data Model Is Explicit, Not Implicit 

In NIEM data, that which is not stated is not implied.  If data says a person's name is "John," it is 
not implicitly saying that he does not have other names, or that “John” is his legal name, or that 
he is different from a person known as “Bob.”  The only assertion being made is that one of the 
names by which this person is known is "John."  

This is one reason that definitions of NIEM content are so important.  The definitions must state 
exactly what any given statement implies.  The concept of "legal name" may be defined that 
makes additional assertions about a name of a person.  Such assertions must be made explicit in 
the definition of the relationship. 

3.5 NIEM Data Model Implementation in XML Schema 

NIEM defines rules for XML Schema documents that enforce the NIEM conceptual model. The 
schemas that follow these rules are referred to as NIEM-conformant schemas.  

As discussed above, NIEM classes and properties are mapped onto XML Schema components.  
The following is an example of how a NIEM class for “Person” is rendered as an XML Schema 
complex type definition: 

Figure 3-1:  Conceptual class rendered as XML Schema 
complex type  

<xsd:complexType name="PersonType"> 

  ... 

</xsd:complexType> 
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The following is an example of how a NIEM property for “ImageOperator” is rendered as an 
element declaration: 

Figure 3-2:  Conceptual property rendered as element 
declaration 

<xsd:element name="ImageOperator" type="nc:PersonType" nillable="true"> 

  ... 

</xsd:element> 

NIEM also defines rules for XML documents that enforce the NIEM conceptual model.  An XML 
document is called a NIEM-conformant XML document if it follows the rules specified by the 
NIEM-conformant schema, as well as additional rules that are NIEM-specific.  For example, in a 
NIEM-conformant XML document, a reference element must refer to a data element that is of 
an appropriate XML Schema type. If this is not the case, the document may be valid according 
to the schema, but it will not be NIEM-conformant. 

Figure 3-3:  Sample fragment of NIEM-conformant data 

<nc:Person> 

  <nc:PersonHairColorCode>BRN</nc:PersonHairColorCode> 

</nc:Person> 

Based on an element declaration from NIEM Core, the following example illustrates a valid 

XML instance that does not conform to NIEM.  Per the appinfo:ReferenceTarget 

element in the schema declaration,  nc:ActivityReference may ONLY refer to an 

nc:ActivityType.  However, within the instance, 

my:ActivityList/nc:ActivityReference refers to “Bill,” which is an 

nc:PersonType.  

Figure 3-4:  Schema declaration for element 
nc:ActivityReference 

<xsd:element name="ActivityReference" type="structures:ReferenceType"> 

  <xsd:annotation> 

    <xsd:documentation> 

      A single or set of related actions, events, or process steps. 

    </xsd:documentation> 

    <xsd:appinfo> 

      <appinfo:ReferenceTarget appinfo:name="ActivityType"/> 

    </xsd:appinfo> 

  </xsd:annotation> 

</xsd:element 
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Figure 3-5:  Valid instance for above schema that does 
NOT conform to NIEM rules 

<nc:Person structures:id=”Bill”> 

  <nc:PersonFullName>William Tell</nc:PersonFullName> 

  <nc:PersonSexCode>M</nc:PersonSexCode> 

</nc:Person> 

    

<nc:Activity structures:id=”Pie”> 

  <nc:ActivityDescriptionText> 

    County fair pie-eating contest 

  </nc:ActivityDescriptionText> 

</nc:Activity>  

    

<my:ActivityList> 

  <nc:ActivityReference structures:ref=”Pie”/> 

  <nc:ActivityReference structures:ref=”Bill”/> 

</my:ActivityList> 

4 Guiding Principles 

Principles in this specification provide a foundation for the rules.  These principles are generally 
applicable in most cases. They should not be used as a replacement for common sense or 
appropriate special cases. 

The principles are not operationally enforceable; they do not specify constraints on XML 
Schema documents and instances.  The rules are the normative and enforceable manifestation 
of the principles.  

The principles discussed in this section are categorized as follows: 

• Specification Guidelines 

• XML Schema Design Guidelines 

• Modeling Design Guidelines 

• Implementation Guidelines 

4.1 Specification Guidelines 

The principles in this section address what material should be included in this NDR and how it 
should be represented. 

4.1.1 Keep Specification to a Minimum 

This specification should state what is required for interoperability, not all that could be 
specified.  Certain decisions (such as normative XML comments) could create roadblocks for 
interoperability, making heavy demands on systems for very little gain.  The goal is not 
standardization for standardization’s sake.  The goal is to maximize interoperability and reuse. 
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[Principle 1] 

 This specification SHOULD specify what is necessary for semantic interoperability and no 
more. 

The term semantic interoperability is here defined as "the ability of two or more computer 
systems to exchange information and have the meaning of that information automatically 
interpreted by the receiving system accurately enough to produce useful results." 

4.1.2 Focus on Rules for Schemas 

This specification should try, as much as is possible, to specify schema-level content.  This is a 
specification for schemas, and so it should specify schemas.  It should avoid specifying complex 
data models or data dictionaries.   

[Principle 2] 

 This specification SHOULD focus on providing rules for specifying schemas. 

4.1.3 Use Specific, Concise Rules 

A rule should be as precise and specific as possible to avoid broad, hard-to-modify rules.  
Putting multiple clauses in a rule makes it harder to enforce.  Using separate rules allows 
specific conditions to be clearly stated. 

[Principle 3] 

 This specification SHOULD feature rules that are as specific, precise, and concise as 
possible. 

4.2 XML Schema Design Guidelines 

The principles in this section address how XML Schema technology should be used in designing 
NIEM-conformant schemas and instances. 

4.2.1 Disallow Content Modification With XML Processors 

XML Schema has constructs that can make the data provided by XML processors different 
before and after schema processing.  An example of this is the use of XML Schema attribute 
declarations with default values.  Before schema validation, there may be no attribute value, but 
after processing, the attribute value exists.   

Within NIEM, the purpose of processing instances against schemas is solely validation:  testing 
that data instances match desired constraints and guidelines.  It should not be used to change 
the content of data instances. 

[Principle 4] 

 The content of a NIEM-conformant data instance SHOULD NOT be modified by 
processing against XML Schema documents.  
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4.2.2 Use XML Validating Parsers for Content Validation 

NIEM is designed for XML Schema validation.  A primary goal is to maximize the amount of 
validation that may be performed by XML Schema-validating parsers.   

XML Schema validates content using content models: descriptions of what elements and 
attributes may be contained within an element, and what values are allowable.  It is the XML 
element hierarchy (elements with attributes and unstructured content, contained by other 
elements) that the XML Schema definition language specifies and that XML Schema validating 
parsers can validate. 

Mechanisms involving linking using attribute and element values are useful, but they should 
only be relied on when absolutely necessary, as XML Schema-validating parsers cannot readily 
validate them.  For example, if a link is established via attribute values, an XML Schema-
validating parser cannot determine that participants have appropriate type definitions.  
Whenever possible, NIEM content should rely on XML syntax that can be validated with XML 
Schema. 

[Principle 5] 

 NIEM-conformant schemas and NIEM-conformant XML documents SHOULD  use XML 
Schema validating parsers for validation of XML content. 

4.2.3 Validate for Conformance to Reference Schemas 

Systems that operate on XML data have the opportunity to perform multiple layers of 
processing.  Middleware, XML libraries, schemas, and application software may process data.  
The primary purpose of XML Schema validation is to restrict processed data to that data that 
conforms to agreed-upon rules.  This restriction is achieved by marking as invalid that data that 
does not conform to the rules defined by the schema. 

[Principle 6] 

 Systems that use NIEM-conformant data SHOULD mark as invalid data that does not 
conform to the rules defined by applicable XML Schema documents. 

4.2.4 Allow Multiple Schemas for XML Constraints 

The NIEM does not attempt to create a one-size-fits-all schema to perform all validation.  
Instead, it creates a set of reference schemas, on which additional constraints may be placed.  It 
also does not focus on language-binding XML Schema implementations, which convert XML 
Schema definitions into working programs.  It is, instead, focused on normalizing language and 
preserving the meaning of data. 

[Principle 7] 

 Constraints on XML instances MAY be validated by multiple schema validation passes, 
using multiple schemas for a single namespace. 
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4.2.5 Define One Reference Schema Per Namespace 

NIEM uses the concept of a reference schema, which defines the structure and content of a 
namespace.  For each NIEM-conformant namespace, there is exactly one NIEM reference 
schema.  A user may use a subset schema or constraint schema in place of a reference schema, 
but all NIEM-conformant XML documents must validate against a single reference schema for 
each namespace. 

[Principle 8]  

 Each NIEM-conformant namespace SHOULD be defined by exactly one reference 
schema. 

4.2.6 Disallow Mixed Content 

XML data that use mixed content are difficult to specify and complicate the task of data 
processing.  Much of the payload carried by mixed content is unchecked and does not facilitate 
data standardization or validation.   

[Principle 9] 

 NIEM-conformant schemas SHOULD NOT specify data that uses mixed content. 

4.2.7 Specify Types for All Constructs 

Schema components within NIEM all have names.  This means that there are no anonymous 
types, elements, or other components defined by NIEM.  Once an application has determined 
the name (i.e., namespace and local name) of an attribute or element used in NIEM-conformant 
instances, it will also know the type of that attribute or element.  

There are no local attributes or elements defined by NIEM, only global attributes and elements.  
This maximizes the ability of application developers to extend, restrict, or otherwise derive 
definitions of local components from NIEM-conformant components.  Using named global 
components in schemas maximizes the capacity for reuse. 

[Principle 10] 

 NIEM-conformant schemas SHOULD NOT use or define local or anonymous components, 
as they adversely affect reuse.  

4.2.8 Avoid Wildcards in Reference Schemas 

Wildcards in NIEM-conformant schemas work in opposition to standardization.  The goal of 
creating harmonized, standard schemas is to standardize definitions of data.  The use of 
wildcard mechanisms (such as xsd:any, which allows insertion of an arbitrary number of 
elements from any namespace) allows nonstandard data to be passed via otherwise 
standardized exchanges.   

Avoidance of wildcards in the standard schemas encourages the separation of standardized and 
nonstandardized data.  It encourages users to incorporate their data into NIEM in a standardized 
way.  It also encourages users to extend in a way that may be readily incorporated into NIEM. 
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[Principle 11] 

 NIEM-conformant components SHOULD NOT incorporate wildcards unless absolutely 
necessary, as they hinder standardization by encouraging use of nonstandardized data 
rather than standardized data. 

4.2.9 Provide Default Reference Schema Locations 

[XMLSchemaStructures] provides three ways to specify the physical location of an XML Schema 
document: schemaLocation, an attribute of the element xsd:import, along with  
xsi:schemaLocation  and  xsi:noNamespaceSchemaLocation, attributes of an 
XML Schema document element.  In all of these uses, the specification explicitly maintains that 
the schema location specified is a hint, which may be overridden by applications.   

[Principle 12] 

 Schema locations specified within NIEM-conformant reference schemas SHOULD be 
interpreted as hints and as default values by processing applications. 

4.2.10 Use Open Standards 

The cooperative efforts of many knowledgeable individuals have resulted in many important 
published information standards.  Where appropriate and applicable, NIEM ought to leverage 
these standards. 

[Principle 13]   

 NIEM standards and schemas SHOULD leverage and enable use of other open standards.     

4.3 Modeling Design Guidelines 

The principles in this section address the design philosophy used in designing the NIEM 
conceptual model. 

4.3.1 Namespaces Enhance Reuse 

NIEM is designed to maximize reuse of namespaces and the schemas that define them.  When 
referring to a concept defined by NIEM, a user should ensure that instances and schemas refer 
to the namespace defined by NIEM.  User-defined namespaces should be used for 
specializations and extension of NIEM constructs but should not be used when the NIEM 
structures are sufficient. 

[Principle 14] 

 NIEM-conformant instances and schemas SHOULD reuse components from NIEM 
distribution schemas when possible. 

NIEM relies heavily on XML namespaces to prevent naming conflicts and clashes.  Reuse of any 
component is always by reference to both its namespace and its local name.  All NIEM 
component names have global scope.  Therefore, validation always occurs against the reference 
schemas or subsets thereof. 
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Example: 

Figure 4-1:  Example of the use of a namespace 

<xsd:element ref="nc:BinaryCaptureDate"  

    minOccurs="0"  

    maxOccurs="unbounded"/> 

In this example, nc:BinaryCaptureDate is reused by referencing its element declaration 
through both its namespace (which is bound to the prefix nc:) and its local name 

(BinaryCaptureDate).  If an element named BinaryCaptureDate is declared in 
another namespace, it is an entirely different element than nc:BinaryCaptureDate.  

There is no implicit relationship to nc:BinaryCaptureDate.   

From a business perspective, the two elements are likely to be related in the sense that they 
may have very similar semantic meanings.  They may have essentially the same meaning, but 
slightly different properties.  Such a relationship may commonly exist.  However, any 
relationship between the two elements must be made explicit using methods outlined in this 
document.   

[Principle 15] 

 A component SHOULD be identified by its local name together with its namespace.  A 
namespace SHOULD be a required part of the name of a component.  A component's 
local name SHOULD NOT imply a relationship to components with similar names from 
other namespaces. 

4.3.2 Design NIEM for Extensibility 

NIEM is designed to be extended.  Numerous methods are considered acceptable in creating 
extended and specialized components.   

[Principle 16] 

 NIEM-conformant  schemas and standards SHOULD be designed to encourage and ease 
extension and augmentation by users and developers outside the standardization 
process.   

4.4 Implementation Guidelines 

The principles in this section address issues pertaining to the implementation of applications 
that use NIEM. 

4.4.1 Avoid Displaying Raw XML Data 

XML data should be made human-understandable when possible, but it is not targeted at 
human consumers. HTML is intended for browsers.  Browsers and similar technology provide 
human interfaces to XML and other structured content.  As such, structured XML content does 
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not belong in places targeting humans.  Human-targeted information should be of a form 
suitable for presentation. 

[Principle 17] 

 XML data SHOULD be designed for automatic processing.  XML data SHOULD NOT be 
designed for literal presentation to people.  NIEM standards and schemas SHOULD NOT 
use literal presentation to people as a design criterion. 

4.4.2 Leave Implementation Decisions to Implementers 

NIEM is intended to be an open specification supported by many diverse implementations.  It 
was designed from data requirements and not from or for any particular system or 
implementation.  Use of NIEM should not depend on specific software, other than XML 
Schema-validating parsers. 

[Principle 18] 

 NIEM SHOULD NOT depend on specific software packages, software frameworks, or 
software systems for interpretation of XML instances. 

 [Principle 19] 

 NIEM schemas and standards SHOULD be designed such that software systems that use 
NIEM may be built with a variety of off-the-shelf and free software products. 

4.5 Modeling Guidelines 

The NIEM Naming and Design Rules (NDR) specify NIEM-conformant components, schemas, and 
instances.  These guidelines influence and shape the more-specific principles and rules in this 
document.  They are derived from best practices and from discussions within the NIEM Business 
Architecture Committee (NBAC) and the NIEM Technical Architecture Committee (NTAC).  This 
list may grow and evolve as NIEM matures.   

The principles in this section address decisions that data modelers must face when creating 
NIEM-conformant schema representations of domain data.  These guidelines are not absolute 
(the key word is SHOULD).  It may not be possible to apply all guidelines in every case.  However, 
they should always be considered.   

4.5.1 Documentation 

As will be described in later sections of this document, all NIEM components are documented 
through their definitions and names.  Although it is often very difficult to apply, a data 
component definition should be drafted before the data component name is finalized.   

Drafting the definition for a data component first ensures that the author understands the exact 
nature of the entity or concept that the data component represents.  The component name 
should subsequently be composed to summarize the definition.  Reversing this sequence often 
results in data definitions that very precisely describe the component name but do not 
adequately describe the entity or concept that the component is designed to represent.  This 
can lead to the ambiguous use of such components.  
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[Principle 20] 

 A data component definition SHOULD be drafted before the associated data element 
name is composed.   

4.5.2 Consistent Naming 

Components in NIEM should be given names that are consistent with names of other NIEM 
components.  Having consistent names for components has several advantages: 

1. It is easier to determine the nature of a component when it has a name that conveys the 
meaning and use of the component. 

2. It is easier to find a component when it is named predictably. 

3. It is easier to create a name for a component when clear guidelines exist. 

[Principle 21] 

 Components in NIEM SHOULD be given names that are consistent with names of other 
NIEM components.  Such names SHOULD be based on simple rules.  

4.5.3 Reflect the Real World 

NIEM provides a standard for data exchange.  To help facilitate unambiguous understanding of 
NIEM reusable components, the names and structures should represent and model the 
informational aspects of objects and concepts that users are most familiar with.  Types should 
not simply model collections of data.   

[Principle 22]     

 Component definitions in NIEM-conformant schemas SHOULD reflect real-world 
concepts.   

4.5.4 Be Consistent 

There should be no conflicts of meaning among types.  This holds for types within a namespace, 
as well as types in different namespaces.  A type should be used consistently in similar 
situations for similar purposes.  Types should be defined for clear understanding and ease of 
intended use.   

[Principle 23] 

 Component definitions in NIEM-conformant schemas SHOULD have semantic 
consistency.   

4.5.5 Reserve Inheritance for Specialization 

Specialization should not be applied simply for the sake of achieving property inheritance.  
Specialization should be applied only where it is meaningful and appropriate to model 
permanent sibling subclasses of a base class that are mutually exclusive of one another.    
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[Principle 24]    

 Complex type definitions in NIEM-conformant schemas SHOULD use type inheritance 
only for specialization. 

Note that application of type augmentations is a well-defined exception to this guideline. 

4.5.6 Do Not Duplicate Definitions 

A real-world entity should be modeled in only one way.  The definition of a type or element 
should appear once and only once.  Multiple components of identical or closely similar 
semantics hinder interoperability because too many valid methods exist for representing the 
same data.  For each data concept that must be represented, there should be only one 
component (and associated type) to represent it.  

Components with very similar semantics may exist in different contexts.  For example, a 
complex type created for a particular exchange may appear to have identical or closely similar 
semantics to a complex type defined in the NIEM Core schema.  However, the type defined at 
the exchange level will have much more precise business requirements and syntax, compared 
with the broad definitions that are heavily reused.  Specific contextual definitions should be 
considered semantic changes.  This includes the application of augmentations to create a 
specialized type for a specific use. 

Two components may have the same definition while having different representations.  For 
example, a string may hold the complete name of a person, or the name may be represented by 
a structure that separates the components of the name into first, last, etc.  The definition of 
alternative representations should not be considered duplication. 

 [Principle 25]     

 Multiple components with identical or undifferentiated semantics SHOULD NOT be 
defined.  Component definitions SHOULD have clear, explicit distinctions. 

4.5.7 Keep It Simple 

All NIEM content and structure is fundamentally based on business requirements for 
information exchange.  To encourage adoption and use in practice, NIEM must implement 
business requirements in simple, consistent, practical ways.    

[Principle 26]   

 NIEM-conformant schemas SHOULD have the simplest possible structure, content, and 
architecture consistent with real business requirements.   

4.5.8 Be Aware of Scope 

The scope of components defined in NIEM-conformant schemas should be carefully considered.  
Some components represent simple data values, while others represent complex objects with 
many parts and relationships.  Components should exist in layers.  Components should exist as 
small, narrowly scoped, atomic entities that are used to consistently construct more broadly 
scoped, complex components (and so on).    
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[Principle 27]    

 Components defined by NIEM-conformant schemas SHOULD be defined appropriate for 
their scope. 

4.5.9 Be Mindful of Namespace Cohesion 

Namespaces should maximize cohesion.  The namespace methodology helps prevent name 
clashes among communities or domains that have different business perspectives and may 
choose identical data names to represent different data concepts.  A namespace should be 
designed so that its components are consistent, may be used together, and may be updated at 
the same time.  

[Principle 28]    

 XML namespaces defined by NIEM-conformant schemas SHOULD encapsulate data 
components that are coherent, consistent, and internally related as a set.  A namespace 
SHOULD encapsulate components that tend to change together. 

5 Relation to Standards 

This section specifies the standards and specifications to which NIEM conforms. Where NIEM 
differs from public standards, the rationale for those differences is discussed in this section. The 
complete list of standards and specifications referenced in this section appears in Appendix D: 
References. 

5.1 XML 1.0 

[Rule 5-1] (REF, SUB, EXT, CON) 

 The schema MUST conform to XML as specified by [XML]. 

Rationale 

 XML is a well-known, commonly used W3C Recommendation.  It is supported by a large 
number of commercial and open-source software tools.  It is a simple, well-defined, 
semi-structured data format that is flexible enough to allow for easy extension.  XML 
works with many other powerful associated technologies such as XML Schema, XSLT, and 
XPath.  Artifacts of NIEM conform to the most recent recommendation for XML. 

5.2 XML Namespaces 

[Rule 5-2] (REF, SUB, EXT, CON) 

 The schema MUST conform to the specification for namespaces in XML, as defined by 
[XMLNamespaces] and [XMLNamespacesErrata]. 

Rationale 

 NIEM is designed to facilitate cross-domain data exchanges and interoperability.  The 
ultimate scope of NIEM is anticipated to be quite large.  The primary purpose of 



NIEM  NIEM Naming and Design Rules 

  29 

namespaces is to avoid naming conflicts, which for NIEM could become quite common, 
since NIEM stakeholders and IEPD developers define and name many of their own data 
components independently.  Therefore, in NIEM, XML namespaces are employed both 
to avoid name clashes and to provide a level of independence to participating domains. 

5.3 XML Schema 

[Rule 5-3] (REF, SUB, EXT, CON) 

 The schema MUST conform to the W3C XML Schema Recommendations: XML Schema 
Part 1: Structures and XML Schema Part 2: Datatypes, as specified by 
[XMLSchemaStructures] and [XMLSchemaDatatypes]. 

Rationale 

 XML Schema has become the generally accepted schema language and is experiencing 
the most widespread adoption. Although other schema languages exist that offer their 
own advantages and disadvantages, the current approach is to base NIEM on XML 
Schema. 

5.4 ISO 11179, Part 4 

Good data definitions are fundamental to data interoperability.  You cannot effectively exchange 
what you cannot understand.  NIEM employs the guidance of [ISO 11179 Part 4] as a baseline 
for its data component definitions.  All NIEM components are documented. 

[Definition: documented component] 

 In a NIEM-conformant schema, a documented component is an XML Schema 
component that has  an associated data definition.  These schema components have a 
textual definition, so that the component may be well-understood.  Schemas that do not 
document their components accordingly are not NIEM-conformant. 

[Definition: data definition]  

 The data definition of a documented component is the content of the first occurrence of 
the element xsd:documentation, which is an immediate child of an occurrence of 

the element xsd:annotation, which is an immediate child of the element that 
defines the component.   
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Figure 5-1:  Example of data definition of 
MeasureMetadataType 

<xsd:complexType name="MeasureMetadataType"> 

  <xsd:annotation> 

    <xsd:documentation> 

      A data type for metadata about a measurement. 

    </xsd:documentation> 

    <xsd:appinfo> 

      <appinfo:Base 

          appinfo:namespace="http://niem.gov/niem/structures/2.0" 

          appinfo:name="MetadataType"/> 

      <appinfo:AppliesTo appinfo:name="MeasureType"/> 

    </xsd:appinfo> 

  </xsd:annotation> 

  <xsd:complexContent> 

    <xsd:extension base="s:MetadataType"> 

      <xsd:sequence> 

        <xsd:element ref="nc:MeasureDate"  

            minOccurs="0" maxOccurs="unbounded"/> 

        <xsd:element ref="nc:Measurer"  

            minOccurs="0" maxOccurs="unbounded"/> 

      </xsd:sequence> 

    </xsd:extension> 

  </xsd:complexContent> 

</xsd:complexType> 

[Rule 5-4] (REF, EXT) 

 Within a NIEM-conformant schema, the data definition provided for each documented 
component SHALL follow the requirements and recommendations for data definitions 
given by [ISO 11179 Part 4]. 

Rationale 

 To advance the goal of creating semantically rich NIEM-conformant schemas, it is 
necessary that data definitions be descriptive, meaningful, and precise.  [ISO 11179 Part 
4]  provides standard structure and rules for defining data definitions.  NIEM uses this 
standard for component definitions.   

Note that the metadata maintained for each NIEM component contains additional details, 
including domain-specific usage examples and keywords.  Such metadata is used to enhance 
search and discovery of components in a registry, and therefore, is not included in schemas.  

For convenience and reference,  the summary requirements and recommendations in [ISO 
11179 Part 4] are reproduced here: 

ISO 11179 Requirements 

A data definition SHALL: 

 Be stated in the singular. 

 State what the concept is, not only what it is not. 

 Be stated as a descriptive phrase or sentence(s). 

 Contain only commonly understood abbreviations. 

 Be expressed without embedding definitions of other data or underlying concepts. 

http://niem.gov/niem/structures/2.0
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ISO 11179 Recommendations 

A data definition SHOULD: 

 State the essential meaning of the concept. 

 Be precise and unambiguous. 

 Be concise. 

 Be able to stand alone. 

 Be expressed without embedding rationale, functional usage, or procedural information. 

 Avoid circular reasoning. 

 Use the same terminology and consistent logical structure for related definitions. 

 Be appropriate for the type of metadata item being defined. 

In addition to the requirements and recommendations of [ISO 11179 Part 4], NIEM applies 
additional rules to data definitions.  These rules are detailed in Section 7.2.1, Human-Readable 
Documentation. 

5.5 ISO 11179, Part 5 

Names are a simple but incomplete means of providing semantics to data components.  Data 
definitions, structure, and context help to fill the gap left by the limitations of naming.  The 
goals for data component names should be syntactic consistency, semantic precision, and 
simplicity.  In many cases, these goals conflict and it is sometimes necessary to compromise or 
to allow exceptions to ensure clarity and understanding.  To the extent possible, NIEM applies 
[ISO 11179 Part 5] to construct NIEM data component names.  

The set of NIEM data components is a collection of data representations for real-world objects 
and concepts, along with their associated properties and relationships.  Thus, names for these 
components would consist of the terms (words) for object classes or that describe object 
classes, their characteristic properties, subparts, and relationships.   

[Rule 5-5] (REF, SUB, EXT) 

 A NIEM component name SHALL be formed by applying the informative guidelines and 
examples detailed in Annex A of [ISO 11179 Part 5], with exceptions as specified in this 
document, most notably those specified in Section 9, Naming Rules.   

Rationale 

 The guidelines and examples of [ISO 11179 Part 5] provide a simple, consistent syntax 
for data names that captures context and thereby imparts a reasonable degree of 
semantic precision.    

NIEM uses the guidelines and examples of [ISO 11179 Part 5]  as a baseline for normative 
naming rules.  However, some NIEM components require bending of these rules.  Special 
naming rules for these classes of components are presented and discussed in Section 9.  In spite 
of these exceptions, most NIEM component names can be disassembled into their [ISO 11179 
Part 5] constituent words or terms.  
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Example: 

The NIEM component name AircraftFuselageColorCode disassembles as follows: 

 Object class term = “Aircraft” 

 Qualifier term = “Fuselage” 

 Property term = “Color” 

 Representation term = “Code” 

Section 9, Naming Rules, details the specific rules for each kind of term and how to construct 
NIEM component names from it.  Exceptions for special components are also described in 
Section 9. 

6 XML Schema Design Rules 

The W3C XML Schema Language provides many features that allow a developer to represent a 
logical data model many different ways. This section establishes rules for the use of XML 
Schema constructs within NIEM-conformant schemas.  Because the XML Schema specifications 
are flexible, comprehensive rules are needed to achieve a balance between establishing uniform 
schema design and providing developers flexibility to solve novel data modeling problems.  

Note that external schemas (non-NIEM-conformant schemas) do not need to obey the rules set 
forth in this section. So long as schema components from external schemas are adapted for use 
with NIEM, according to the modeling rules in Section 7.7, they may be used as they appear in 
the external standard, even if the schema components violate the rules for NIEM-conformant 
schemas. 

The XML Schema design rules in this section fall into the following categories: 

• Restrictions on XML Schema Constructs 

• xsd:schema Document Element 

• Namespace Imports 

• Annotations 

• Type Definitions 

• Additional Definitions and Declarations 

6.1 Restrictions on XML Schema Constructs 

A number of XML Schema constructs are not used within NIEM-conformant schemas.  Many of 
these constructs provide capability that is not currently needed within NIEM.  Some of these 
constructs create problems for interoperability, with tool support, or with clarity or precision of 
data model definition. 

http://niem.gtri.gatech.edu/iepd-ssgt/SSGT-GetProperty.do?propertyKey=no-33
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6.1.1 No Mixed Content 

[Rule 6-1] (REF, SUB, EXT) 

 Within the schema, an element xsd:complexType SHALL NOT own the attribute 

mixed with the value true. 

[Rule 6-2] (REF, SUB, EXT) 

 Within the schema, an element declaration that is of complex content SHALL NOT own 
the attribute mixed with the value true. 

Rationale 

 Mixed content allows the mixing of data tags with text.  Languages such as XHTML use 
this syntax for markup of text.  NIEM-conformant schemas define XML that is for data 
exchange, not text markup.  Mixed content creates complexity in processing, defining, 
and constraining content.   

 Well-defined markup languages exist outside NIEM and may be used with NIEM data.  
External schemas may include mixed content and may be used with NIEM.  However, 
mixed content must not be defined by NIEM-conformant schemas in keeping with 
[Principle 9]. 

6.1.2 No Notations 

[Rule 6-3] (REF, SUB, EXT) 

 The schema SHALL NOT contain a reference to the type definition xsd:NOTATION or 
to a type derived from that type. 

[Rule 6-4] (REF, SUB, EXT) 

 The schema SHALL NOT contain the element xsd:notation. 

Rationale 

 XML Schema notations allow the attachment of system and public identifiers on fields of 
data.  The notation mechanism does not play a part in validation of instances and is not 
supported by NIEM. 

6.1.3 No Schema Inclusion 

[Rule 6-5] (REF, SUB, EXT) 

 The schema SHALL NOT contain the element xsd:include. 

Rationale 

 Element xsd:include brings schemas defined in separate files into the current 
namespace.  It breaks a namespace up into arbitrary partial schemas, which needlessly 
complicates the schema structure, making it harder to reuse and process, and also 
increases the likelihood of conflicting definitions.   
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 Inclusion of schemas that do not have namespaces also complicates schema 
understanding. This inclusion makes it difficult to find the realization of a specific 
schema artifact and create aliases for schema components that should be reused.  
Inclusion of schemas also violates [Principle 8], as it uses multiple schemas to construct 
a namespace.   

6.1.4 No Schema Redefinition 

[Rule 6-6] (REF, SUB, EXT) 

 The schema SHALL NOT contain the element xsd:redefine. 

Rationale 

 The xsd:redefine element allows an XML Schema document to restrict and extend 
components from a namespace, in that very namespace.  Such redefinition introduces 
duplication of definitions, allowing multiple definitions to exist for components from a 
single namespace.  This violates [Principle 8] that a single reference schema defines a 
NIEM-conformant namespace. 

6.1.5 Wildcard Restrictions 

There are many constructs within XML Schema that act as wildcards.  That is, they introduce 
buckets that may carry arbitrary or otherwise nonvalidated content.  Such constructs violate 
[Principle 11], and as such provide implicit workarounds for the difficult task of agreeing on the 
content of data models.  Such workarounds should be made explicitly, outside the core data 
model. 

6.1.5.1 No Unconstrained Type Substitution 

[Rule 6-7] (REF, SUB, EXT) 

 The schema SHALL NOT reference the type xsd:anyType. 

Rationale 

 XML Schema has the concept of the "ur-type," a type that is the root of all other types.  
This type is realized in schemas as xsd:anyType.  

 NIEM-conformant schemas must not use xsd:anyType, because this feature permits 
the introduction of arbitrary content (i.e., untyped and unconstrained data) into an XML 
instance. NIEM intends that the schemas describing that instance describe all constructs 
within the instance.   

6.1.5.2 No Unconstrained Text Substitution 

[Rule 6-8] (REF, SUB, EXT) 

 The schema SHALL NOT reference the type xsd:anySimpleType. 
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Rationale 

 XML Schema provides a restriction of the “ur-type,” which contains only simple content.  
This provides a wildcard for arbitrary text.  It is realized in XML Schema as 
xsd:anySimpleType.   

 NIEM-conformant schemas must not use xsd:anySimpleType because this feature 
is insufficiently constrained to provide a meaningful starting point for content 
definitions. Instead, content should be based on one of the more specifically defined 
simple types defined by XML Schema. 

6.1.5.3 Untyped Elements Must Be Abstract 

[Rule 6-9] (REF, SUB, EXT) 

 Within the schema, an element declaration with the attribute name and without the 
attribute type MUST carry the attribute abstract with the value true. 

Rationale 

 Untyped element declarations act as wildcards that may carry arbitrary data.  By 
declaring such types abstract, NIEM allows the creation of type independent semantics 
without allowing arbitrary content to appear in XML instances.  

6.1.5.4 No Untyped Attributes 

[Rule 6-10] (REF, SUB, EXT) 

 Within the schema, an attribute declaration with attribute name MUST carry the 
attribute type. 

Rationale 

 Untyped XML Schema attributes allow arbitrary content, with no semantics.  Attributes 
must have a type so that specific syntax and semantics will be provided. 

6.1.5.5 No Unconstrained Element Substitution 

[Rule 6-11] (REF, SUB) 

 The schema SHALL NOT contain the element xsd:any. 

Rationale 

 The xsd:any particle (see Model Group Restrictions for an informative definition of 
particle) provides a wildcard that may carry arbitrary content.  The particle xsd:any 
may appear within constraint schemas, extension schemas, and exchange schemas.  

6.1.5.6 No Unconstrained Attribute Substitution 

[Rule 6-12] (REF, SUB, EXT) 

 The schema SHALL NOT contain the element xsd:anyAttribute. 
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Rationale 

 The xsd:anyAttribute element provides a wildcard, where arbitrary attributes may 

appear.  The element xsd:anyAttribute may appear within constraint schemas or 
within other schemas that are not NIEM-conformant, but it is prohibited in NIEM-
conformant schemas. 

6.1.6 Component Naming Restrictions 

All NIEM components must be named.  That is, type definitions, and element and attribute 
declarations must be given explicit names — local and anonymous component definition is not 
allowed. Note that XML Schema enforces the placement of attribute group and model group 
definitions as top-level components, which forces the components to be named.  

6.1.6.1 No Anonymous Type Definitions 

[Rule 6-13] (REF, SUB, EXT) 

 Within the schema, any occurrence of the element xsd:complexType or 

xsd:simpleType  MUST appear as an immediate child of the element 
xsd:schema. 

Rationale 

 NIEM does not support anonymous types in NIEM-conformant schemas.  All XML 
Schema "top-level" types (children of the document element) are required by XML 
Schema to be named. By requiring NIEM type definitions to be top level, they are forced 
to be named and are therefore globally reusable. 

6.1.6.2 No Local Element Declarations 

[Rule 6-14] (REF, SUB, EXT) 

 Within the schema, any element declaration carrying the attribute name MUST appear 

as an immediate child of the document element xsd:schema. 

Rationale 

 All schema components defined by NIEM-conformant schemas must be named, 
accessible from outside the defining schema, and reusable across schemas.  Local 
element definitions provide named elements that are not reusable outside the context 
in which they are defined.  Requiring named NIEM elements to be top level ensures that 
they are globally reusable. 

6.1.6.3 No Local Attribute Definitions 

[Rule 6-15] (REF, SUB, EXT) 

 Within the schema, any attribute declaration owning the attribute name MUST appear 

as an immediate child of the document element xsd:schema. 
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Rationale 

 All schema components defined by NIEM-conformant schemas are named, accessible 
from outside the defining schema, and reusable across schemas.  Local attribute 
definitions provide named attributes that are not reusable outside the context in which 
they are defined.  Requiring named NIEM attributes to be top level ensures that they are 
globally reusable. 

6.1.7 No Uniqueness Constraints 

[Rule 6-16] (REF, EXT) 

 The schema SHALL NOT contain any of the elements xsd:unique, xsd:key, 
xsd:keyref, xsd:selector, or xsd:field. 

Rationale 

 XML Schema provides NIEM with the ability to apply uniqueness constraints to schema-
validated content.  These mechanisms, however, establish relationships in a way that is 
very difficult to understand, extend, and keep consisent through schema reuse.  These 
elements may be used in subset schemas and constraint schemas. 

6.1.8 Model Group Restrictions 

Complex content definitions in XML Schema use model group schema components.  These 
schema components,  xsd:all, xsd:choice and xsd:sequence, also called 
compositors, provide for ordering and selection of particles within a model group.  

XML Schema defines a particle as an occurrence of xsd:element, xsd:sequence, 

xsd:choice, xsd:any (wildcard) and xsd:group (model group) within a content model.  
For example, an xsd:sequence within an XML Schema complex type is a particle.  An 

xsd:element occurring within an xsd:sequence is also a particle.   

6.1.8.1 Restrictions on Particle Ordering 

[Rule 6-17] (REF, SUB, EXT) 

 The schema SHALL NOT contain the element xsd:all. 

Rationale 

 The element xsd:all provides a set of particles (e.g., elements) that may be included 
in an instance, in no particular order.  This can greatly complicate processing and may be 
difficult to comprehend and satisfy.   

[Rule 6-18] (REF) 

 The schema SHALL NOT contain the element xsd:choice. 
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Rationale 

 The element xsd:choice provides an exclusive set of particles, one of which may 
appear in an instance.  This can greatly complicate processing and may be difficult to 
comprehend, satisfy, and reuse.   

 The element xsd:choice may be used in extension and exchange schemas, as it 
presents a simple way for a schema writer to represent a set of optional content.  It may 
also be used in subset schemas and constraint schemas to represent syntactic 
alternatives. 

6.1.8.2 No Recursively Defined Model Groups 

[Rule 6-19] (REF, SUB) 

 Within the schema, any immediate child of a model group xsd:sequence element 
MUST be one of xsd:annotation or   xsd:element 

[Rule 6-20] (EXT) 

 Within the schema, any immediate child of a model group xsd:sequence element 

MUST be one of xsd:annotation,  xsd:element, xsd:choice, or xsd:any. 

[Rule 6-21] (EXT) 

 Within the schema, any immediate child of a model group xsd:choice element MUST 

be one of xsd:annotation or xsd:element. 

[Rule 6-22] (EXT) 

 The use of xsd:choice SHALL define syntax, structure, grouping, and cardinality of 
instances, but SHALL NOT define semantics.  The semantics of a property within an 
xsd:choice SHALL be identical to the semantics of the property within an 
xsd:sequence.  

Rationale 

 XML Schema provides the capability for model groups to be recursively defined.  This 
means that a sequence may contain a sequence, and a choice may contain a choice.  
These rules are designed to keep content models simple, comprehensive, and reusable: 
The content of an element should boil down to a simple list of elements, defined in as 
straightforward a manner as is possible to meet requirements. 

6.1.8.3 Restrictions on Named Groups 

[Rule 6-23] (REF, SUB, EXT) 

 The schema SHALL NOT contain the element xsd:group.  

Rationale 

 NIEM does not allow groups of elements to be named other than as named complex 
types.  A group in XML Schema creates a named entity that may be included in multiple 
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types, and which consists of a sequence of or choice between element particles.  The 
NIEM has not developed a semantic model for these components, and they are not 
integrated into NIEM's design. 

6.1.8.4 Particle Cardinality Restrictions 

[Rule 6-24] (REF, SUB, EXT) 

 Within the schema, if the element xsd:sequence carries the attribute minOccurs, 
it MUST set the value for the attribute to 1. 

[Rule 6-25] (REF, SUB, EXT) 

 Within the schema, if the element xsd:sequence carries the attribute maxOccurs, 
it MUST set the value of the attribute to 1.  

Rationale 

 XML Schema allows each particle to specify cardinality (how many times the particle 
may appear in an instance). NIEM restricts the cardinality of xsd:sequence particles 
to exactly one, to ensure that content model definitions are defined in as 
straightforward a manner as possible.  

Discussion 

 Note that the particle xsd:any is not allowed in reference schemas or subset schemas 
by [Rule 6-11] 

 Note also that element declarations acting as a particle (particles formed by 
xsd:element) may have any cardinality; they are not restricted by this rule.  Should a 
user desire the behavior that would be obtained from the use of special cardinalities on 
these particles, he or she should define them within explicitly named elements. 

6.1.9 Block Substitution Restrictions 

XML Schema provides a mechanism that will prevent substitution for an element declaration or 
type definition.  That is, an element declaration may declare one or more of the following: 

1. An instance of this element declaration may not substitute an extended type. 

2. An instance of this element declaration may not substitute a restricted type. 

3. An instance of this element declaration may not substitute another element. 

These restriction mechanisms are very useful in instances; they allow restriction of content 
models down to exact types and elements.  However, in shared data models, they limit reuse 
and customization options, in opposition to [Principle 14]. 

[Rule 6-26] (REF, EXT) 

 Within the schema, if an element declaration carries the attribute block, it MUST set 
the value for the attribute to the empty string.  



NIEM  NIEM Naming and Design Rules 

  40 

[Rule 6-27] (REF, EXT) 

 Within the schema, if a complex type definition carries the attribute block, it MUST 
set the value for the attribute to the empty string. 

[Rule 6-28] (REF, SUB, EXT) 

 Within the schema, if the document element xsd:schema carries the attribute 
blockDefault, it MUST set the value for the attribute to the empty string. 

Rationale 

 Restriction of substitution options reduces capacity for reuse; thus, it is forbidden within 
NIEM-conformant schemas   In particular, setting the block value at the schema level 
complicates understanding of component definitions. 

6.1.10 Final Value Restrictions 

XML Schema provides the capability for type definitions and elements to declare a final value.  
This value prevents the creation of derived components.  In shared data models, this capability 
limits reuse and customization options, in opposition to [Principle 14]. 

[Rule 6-29] (REF, SUB) 

 Within the schema, if a simple type definition carries the attribute final, it MUST set 
the value for the attribute to the empty string. 

[Rule 6-30] (REF, SUB) 

 Within the schema, if a complex type definition carries the attribute final, it MUST set 
the value for the attribute to the empty string. 

[Rule 6-31] (REF, SUB) 

 Within the schema, if an element declaration carries the attribute final, it MUST set 
the value for the attribute to the empty string. 

[Rule 6-32] (REF, SUB, EXT) 

 Within the schema, if the document element xsd:schema carries the attribute 
finalDefault, it MUST set the value for that attribute to the empty string. 

Rationale 

 Restriction of derivation options reduces capacity for reuse and so is forbidden within 
reference and subset schemas.  As well, the use of finalDefault complicates 
understanding of schemas, so it is only allowed in constraint schemas. 

6.1.11 Default Value Restrictions 

XML Schema provides the capability for element and attribute declarations to provide default 
values when XML instances using those components do not provide values.  
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[Rule 6-33] (REF, SUB, EXT, CON) 

 Within the schema, any element xsd:element SHALL NOT carry the attribute 

default. 

[Rule 6-34] (REF, SUB, EXT, CON) 

 Within the schema, any element xsd:attribute SHALL NOT carry the attribute 

default. 

Rationale 

 The use of default values means that the act of validating a schema will insert a value 
into an XML instance where none existed prior to schema validation.  Schema validation 
is for rejection of invalid instances, not for modifying instance content, as specified in 
[Principle 4]. 

6.2 xsd:schema Document Element 

The features of XML Schema allow for flexibility of use for many different and varied types of 
implementation. NIEM requires consistent use of these features.   

[Rule 6-35] (REF, SUB, EXT, CON) 

 Within the schema, the document element xsd:schema MUST carry the attribute 
targetNamespace.   

[Rule 6-36] (REF, SUB, EXT, CON) 

 Within the schema, the value of the required attribute targetNamespace on the 

document element xsd:schema MUST match the production <absolute-URI> as 
defined by [RFC3986]. 

Rationale 

 Schemas without defined namespaces provide definitions that are ambiguous, in that 
they are not universally identifiable.   

 Absolute URIs are the only universally meaningful URIs.  URIs include both URLs and 
URNs.  Finding the target namespace using standard XML Base technology is 
complicated and not specified by XML Schema.  Relative URIs are not universally 
identifiable, as they are context-specific. 

Discussion 

 The document element xsd:schema may contain optional attributes 

attributeFormDefault  and elementFormDefault.  The values of these 
attributes are immaterial to a NIEM-conformant schema, as each attribute defined by a 
NIEM-conformant schema must be defined at the top level and so must be qualified 
with the target namespace of its declaration. 
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[Rule 6-37] (REF, SUB, EXT, CON) 

 Within the schema, the document element xsd:schema MUST carry the attribute 

version.  

[Rule 6-38] (REF, SUB, EXT, CON) 

 Within the schema, the value of the required attribute version on the document 

element xsd:schema MUST NOT be an empty string. 

Rationale 

 It is very useful to be able to tell one version of a schema from another.  Apart from the 
use of namespaces for versioning, it is sometimes necessary to release multiple versions 
of schema documents.  Such use might include: 

• Subset schemas and constraint schemas 

• Error corrections or bug fixes 

• Documentation changes 

• Contact information updates 

 In such cases, a different value for the version attribute implies a different version of 
the schema.  No specific meaning is assigned to specific version identifiers.   

 Note that some of the above uses for the version attribute are not employed in 
management of NIEM Core and domain schemas.  An author of an application schema 
or exchange may use the version attribute for these purposes within their schemas. 

6.3 Namespace Imports 

XML Schema requires that namespaces used in external references be imported using the 
xsd:import element.  The xsd:import element appears as an immediate child of the 
xsd:schema element.  A schema must import any namespace which 

1. Is not the local namespace, and  

2.  Is referenced from the schema. 

The behavior of import statements is not necessarily intuitive.  In short, the import introduces 
namespace into the schema in which the import appears; it has no transitive effect.  If the 
namespaces of an import statement are not referenced from the schema, then the import 
statement has no effect.  The import statement cannot be used to direct schema locations for 
schemas not referenced from the schema performing the import.  The schema location directed 
by the import element may be overridden by user directive at the parser, or by being overridden 
by import elements from other schemas. 

Imports of namespaces should be made as uniform as possible; all schemas in a schema set 
should agree on what schema location goes with a particular namespace. Otherwise, behavior 
may be dependent on the behavior of the parser and the order of components in instance 
documents. 
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6.3.1 xsd:import Element Restrictions 

[Rule 6-39] (REF, SUB, EXT) 

 Within the schema, the element xsd:import MUST carry the attribute namespace.   

[Rule 6-40] (REF, SUB, EXT) 

 Within the schema, the value of the required attribute namespace  owned by the 

element xsd:import MUST match the production <absolute-URI> as defined by 
[RFC3986]. 

Rationale 

 An import that does not specify a namespace is enabling reference to non-namespaced 
components.  NIEM requires that all components have a defined namespace.  It is 
important that the namespace declared by a schema be universally defined and 
unambiguous.  Use of the standard XML Base for processing is not specified by XML 
Schema; thus it is not supported here. 

[Rule 6-41] (REF, SUB, EXT) 

 Within the schema, the element xsd:import MUST carry the attribute 
schemaLocation.  

Rationale 

 An import that does not specify a schema location gives no clue to processing 
applications as to where to find an implementation of the namespace.  Even though 
such a provided schema location may be overridden, it is important that an initial 
default be provided for processing. 

[Rule 6-42] (REF, SUB, EXT) 

 Within the schema, the value of the required attribute schemaLocation carried by 

the element xsd:import MUST match either the production <absolute-URI> or 
the definition of "relative-path reference," as defined by [RFC3986]. 

Rationale 

 The default value may be specified either as absolute or relative URIs.  Since URNs are 
not resolvable, they are inappropriate for use in schemaLocation.  The requirement 
for conformance to "relative-path reference" is required to avoid the more obscure 
syntax of "network-path reference" and the system-specific "absolute-path reference." 

[Rule 6-43] (REF, SUB, EXT) 

 Within the schema, the value of the required attribute schemaLocation carried by 
the element xsd:import MUST be resolvable to a XML schema document file that is 
valid according to [XMLSchemaStructures] and [XMLSchemaDatatypes]. 
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Rationale 

 The XML Schema specification requires that the object imported via xsd:import must 
be a schema document.  This rule reinforces that requirement. 

Discussion 

 Note that relative URI references are dereferenced from the location of the schema 
document performing the import, not from the location of an instance or other schema.  
Although NIEM distribution schemas use only relative URI references, that need not be 
the case for other NIEM-conformant schemas.   

6.3.2 Including XML Content From Other Namespaces 

Within an XML Schema document, there are several mechanisms to include XML content that is 
not from the XML or XML Schema namespaces.  Those mechanisms are: 

1. Carrying attributes from other than the XML or XML Schema namespaces on an element 
in the XML Schema namespace. 

 By the rules of XML Schema, any element may have attributes that are from other 
namespaces.  These attributes do not participate in validation but may carry information 
useful to tools that process schemas. 

2. Adding content to the elements xsd:appinfo and xsd:documentation. 

 XML Schema allows arbitrary XML content to be included within annotations.  Such XML 
does not participate in validation but may communicate useful information to schema 
readers or processors.   

NIEM requires all such XML content to be “schema-valid.”  That is, it must have a schema, and it 
must validate against that schema.  The schemas must be introduced via xsd:import 
elements within the schema in which the content is used.  This is for two reasons: 

1. Some tools require imports of namespaces used within schemas and validate against 
those schemas. 

2. The definition and the validity of content within schemas should be clear. 

[Rule 6-44] (REF, SUB, EXT) 

 Within the schema, when a namespace other than the XML namespace or the XML 
Schema namespace is used, it MUST be imported into the schema using the 
xsd:import element. 

Rationale 

 This rule ensures that used namespaces have recognizable defining sources and that 
they will cooperate with existing tools. 
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[Rule 6-45] (REF, SUB, EXT) 

 Within the schema, when a namespace other than the XML namespace or the XML 
Schema namespace is used, its content MUST be valid with respect to the schema 
imported for that namespace. 

Rationale 

 XML Schema does not address the schema-validity of content used for annotations or 
attributes on schema components.  This rule ensures that content used in such a 
manner is schema-valid.  This encourages interoperable data definitions and schema 
documents. 

6.4 Annotations 

Annotations in XML Schema "provide for human- and machine-targeted annotations of schema 
components." [XMLSchemaStructures]  The two types: human-targeted and machine-targeted, 
are kept separate by the use of two separate container elements defined by XML Schema: 
xsd:documentation and xsd:appinfo.   

[Rule 6-46] (REF, EXT) 

 Within the schema, an element SHALL have at most one instance of an element 
xsd:annotation as an immediate child. 

Rationale 

 XML Schema allows annotations to be added to components in a fairly loose manner: 
there may be multiple annotations, each of which may have multiple documentation 

or appinfo elements.  This flexibility in the syntax provides no additional expressivity 
but does complicate processing, so it is forbidden in NIEM. 

6.4.1 Human-Readable Documentation 

XML Schema describes the content of xsd:documentation elements as "user information."  
This information is targeted for reading by humans.  The XML Schema specification does not say 
what form human-targeted information should take.  Within NIEM, user information is plain 
text with no formatting or XML structure.   

[Rule 6-47] (REF, EXT) 

 Within the  schema, the content of the xsd:documentation element that 
constitutes the data definition of a component MUST be character information items as 
specified by [XMLInfoSet]. 

Rationale 

 According to the XML Schema specification, the content of xsd:documentation 
elements is intended for human consumption, whereas other structured XML content is 
intended for machine consumption.  Therefore, the xsd:documentation element 
MUST NOT contain structured XML data.  As such, any XML content appearing within a 
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documentation element is in the context of human-targeted examples and should be 
escaped using &lt; and &gt;.  This rule also prohibits comments within 
documentation elements. 

 See [SchemaForXMLSchema], the schema for XML Schema, as an example of 
documentation elements containing properly escaped XML elements. 

XML comments are not XML Schema constructs and are not specifically associated with any 
schema-based components.  As such, comments are not considered semantically meaningful by 
NIEM and may not be retained through processing of NIEM schemas. 

[Rule 6-48] (REF, SUB, EXT) 

 XML comments SHALL not be used for persistent information about constructs within 
the schema. 

Rationale 

 Since XML comments are not associated with any specific XML Schema construct, there 
is no standard way to interpret comments.  As such, comments should be reserved for 
internal use, and XML Schema annotations should be preferred for meaningful 
information about components.  NIEM specifically defines how information should be 
encapsulated in NIEM-conformant schemas via xsd:annotation elements. 

6.4.2 Machine-Readable Annotations 

XML Schema provides special annotations for support of automatic processing.  The XML 

Schema specification provides the element xsd:appinfo to carry such content and does not 

specify what style of content they should carry.  In NIEM, xsd:appinfo elements carry 
structured XML content. 

[Rule 6-49] (REF, EXT) 

 Within the schema, any immediate child of an xsd:appinfo element SHALL be an 
element information item or a comment information item. 

Rationale 

 Application information elements are intended for automatic processing; thus they 
should contain machine-oriented data, XML. 

[Rule 6-50] (REF, EXT) 

 Within the schema, any element that is an immediate child of an xsd:appinfo 
element SHALL be in a namespace. 

Rationale 

 Use of default namespace is allowed, but content has to have a real namespace, and 
namespaces must be declared.  The XML namespaces specification includes the concept 
of content not in a namespace. Non-namespaced data runs counter to the principle of 
distinctly identifiable data definitions. 
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[Rule 6-51] (REF, EXT) 

 Within the schema, an element in the XML Schema namespace MUST NOT occur as a 
descendant of any element xsd:appinfo. 

Rationale 

 NIEM-conformant schemas are designed to be very easily processed.  Although uses of 
XML Schema elements as content of xsd:appinfo elements could be contrived, it is 
not current practice and could seriously complicate the authoring of schema validators 
and processors, such as XSLT, which may evaluate XML elements by their namespaces 
and names.  Forbidding the use of XML Schema elements outside valid uses of schema 
will simplify such processing. 

6.5 Type Definitions 

XML Schema provides a variety of ways to define new types.  This section covers the NIEM 
restrictions on defining complex types, with both simple and complex content. 

6.5.1 Complex Type Definitions 

XML Schema provides a large amount of flexibility in the creation of complex types.  NIEM 
narrows the schema capability to a smaller set of constructs. 

Note that rules on prohibited constructs (Section 6.1.6.1: No Anonymous Type Definitions, 
above) forbid defining complex types as local types.  All complex type definitions must be top-
level, named components.   

XML Schema makes a distinction between complex types with simple content versus complex 
types with complex content.  Complex types with simple content (CSCs) have content that is not 
allowed to contain XML elements.  Complex types with complex content (CCCs) have content 
that does contain XML elements. Since mixed content is prohibited in NIEM by [Rule 6-1], all 
NIEM-conformant complex types are either CSCs or CCCs.   

[Rule 6-52] (REF, SUB, EXT) 

 Within the schema, the element xsd:complexType MUST have as an immediate 
child either the element xsd:complexContent or the element 

xsd:simpleContent. 

Rationale 

 XML Schema provides shorthand to defining complex content of a complex type, which 
is to define the complex type with immediate children that specify elements, or other 
groups, and attributes.  In the desire to normalize schema representation of types and to 
be explicit, NIEM forbids the use of that shorthand. 

6.5.2 Simple Content (CSC) Restrictions 

Within a NIEM-conformant schema, a complex type with simple content (CSC) can be created in 
one of two ways: 
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1. By extension of an existing CSC. 

2. By extension of an existing simple type. 

Both of these methods use the element xsd:extension. 

[Rule 6-53] (REF) 

 Within the schema, the element xsd:simpleContent MUST have as an immediate 
child the element xsd:extension. 

Rationale 

 This rule ensures that the definition of a CSC will use the XML Schema extension facility.  
This allows for the above cases while disallowing much more complicated syntactic 
options available in XML Schema. 

 Note that the applicability of the above rule allows for use of xsd:restriction 

within xsd:simpleContent in subset schemas, extension schemas, and exchange 
schemas. 

Although the two above methods have similar syntax, there are subtle differences.  NIEM's 
conformance rules ensure that any complex type has the necessary attributes for representing 
IDs, metadata, and link metadata.  So case 1 does not require adding these attributes, as they 
are guaranteed to occur in the base type. 

However, in case 2, in which a new complex type is created from a simple type, the attributes 
for complex types must be added.  This is done by reference to the attribute group 
structures:SimpleObjectAttributeGroup. 

[Rule 6-54] (REF, SUB, EXT) 

 Within the schema, given an element xsd:simpleContent with a child 

xsd:extension owning an attribute base, if the attribute base has a value that 
resolves to the name of a simple type, then the element xsd:extension MUST have 

an immediate child element xsd:attributeGroup. 

[Rationale] 

 This rule ensures that a CSC that is created as an immediate extension of a simple type 
adds the attributes required for specific NIEM linking mechanisms.  The attribute group 
is required to be structures:SimpleObjectAttributeGroup by [Rule 6-59]. 

This creates a pattern for CSC definition as follows: 
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Figure 6-1:  Example of CSC derived from a simple type 

<xsd:complexType name="PercentageType"> 

  ... 

  <xsd:simpleContent> 

    <xsd:extension base="nc:PercentageSimpleType"> 

      <xsd:attributeGroup ref="structures:SimpleObjectAttributeGroup"/> 

    </xsd:extension> 

  </xsd:simpleContent> 

</xsd:complexType> 

6.5.3 Complex Content (CCC) Restrictions 

Within a reference schema, a complex type with complex content (CCC) can be created in one of 
two ways: 

1. By extension of an existing complex type (CCC or CSC). 

2. By extension of the type structure:ComplexObjectType. 

Both of these methods use the element xsd:extension.  Within extension schemas, 
exchange schemas, and subset schemas, the use of xsd:restriction to create complex 
types with complex content is also allowed. 

[Rule 6-55] (REF) 

 Within the schema, the element xsd:complexContent MUST have as an immediate 
child the element xsd:extension. 

Rationale 

 NIEM does not support, as conformant, the use of complex type restriction.  NIEM 
defines a language, in which specific content is allowed.  It does not specify messages 
that forbid content.  Such restrictions may be performed in nonconformant schemas or 
within constraint schemas or other artifacts of constraint. 

 Note that XML Schema requires use of the attribute base on xsd:extension. 

 Note also that the applicability allows for the use of restriction in subset schemas, 
extension schemas, exchange schemas, and constraint schemas. 

The xsd:extension  element says that the type under definition is an extension of another 
type.  That type must be limited to those used with NIEM. 

[Rule 6-56] (REF, SUB, EXT) 

 Within the schema, given an element xsd:complexContent with a child 

xsd:extension owning an attribute base, the attribute base MUST have a value 
that resolves to the name of one of the following: 

1. The type structures:ComplexObjectType. 

2. The type structures:MetadataType. 

3. The type structures:AugmentationType. 
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4. A complex type that is a NIEM-conformant component. 

[Rationale] 

 This rule ensures that a CCC has well-defined ancestry.  In turn, this ensures that every 
CCC has well-defined semantics. 

[Rule 6-57] (EXT) 

 Within the schema, given an element xsd:complexContent with a child 
xsd:restriction owning an attribute base, the attribute base MUST have a 
value that resolves to the name of a complex type that is a NIEM-conformant 
component. 

[Rationale] 

 This ensures that a CCC defined through restriction has well-defined semantics. 

6.6 Additional Definitions and Declarations 

XML Schema provides a variety of ways to declare and define elements and attributes.   

6.6.1 Element Declarations 

Within NIEM-conformant schemas, elements may be declared as abstract.  Element 
declarations must be at the top level, as rules in other sections prohibit the use of local 
elements.  Elements may be defined without a type, but any element declaration that has no 
type must be declared abstract by [Rule 6-9], which forbids anonymous type definitions.   

Within an element declaration, the attributes fixed, nillable, and  
substitutionGroup may be used as per the XML Schema specification.  The attribute 

form is irrelevant to NIEM, as NIEM-conformant schemas may not contain local element 
definitions by [Rule 6-14]. 

Element uses (element declarations acting as particles) must reference top-level named 
elements.  In an element use, NIEM allows any values for the XML Schema properties “max 
occurs” and “min occurs.” 

Based on a variety of user requirements, all elements in the NIEM 2.0 schemas are defined to 
allow a nil value.  For example, the following XML instances are permitted in NIEM-conformant 
instances:  

 <nc:ActivityDate></nc:ActivityDate> 

OR 

 <nc:ActivityDate/>  

Nil value allowance or restriction is only significant to elements of nontextual types (e.g., dates 
and numeric values) and elements of text types that have restricted value space (e.g., code).  
This is because an unrestricted text typed element always contains the empty string ("") in its 
value space.  However, for numeric values and restricted text type elements, NIEM allows users 
to tighten constraints as required in IEPDs by resetting nillable="false". 
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6.6.2 Attribute Declarations 

Attribute declarations must be declared with a type by [Rule 6-10], which forbids anonymous 
type definitions for attributes. 

Within an attribute declaration, the attribute fixed may be used as per the XML Schema 

specification.  Within an attribute declaration, the attribute form is irrelevant to NIEM, as 
NIEM-conformant schemas may not contain local attribute declarations. 

Attribute uses (attribute declarations acting as particles) must be uses of top-level named 
attributes.  NIEM-conformant schemas may not define local named attributes within type 
definitions.  Within an attribute use, the attributes fixed and use may be used as per the 
XML Schema specification.   

6.6.3 Attribute Group Definitions 

In NIEM-conformant schemas, use of attribute groups is restricted. The only attribute group that 
plays a part in NIEM-conformant schemas is 
structures:SimpleObjectAttributeGroup.  This attribute group provides the 
attributes necessary for IDs, metadata, and link metadata. 

[Rule 6-58] (REF, SUB, EXT) 

 Within the schema, any occurrence of the element xsd:attributeGroup MUST 

own an attribute ref. 

[Rationale] 

 The only attribute group used in NIEM-conformant schemas is 
structures:SimpleObjectAttributeGroup, as established by rules [Rule 6-
59] and [Rule 7-39].  Therefore, NIEM-conformant schemas do not define additional 
attribute groups. 

[Rule 6-59] (REF, SUB, EXT) 

 Within the schema, the attribute ref owned by any element xsd:attributeGroup 
MUST have a value of a qualified name (possibly using the default namespace) that 
SHALL resolve to the namespace for the NIEM structures namespace and the local 

name SimpleObjectAttributeGroup. 

[Rationale] 

 The only attribute group used within NIEM-conformant schemas is 
structures:SimpleObjectAttributeGroup.  Therefore, within a NIEM-
conformant schema, only this attribute group can be referenced. 

7 Modeling Rules 

NIEM provides a framework for modeling concepts and relationships as XML artifacts.  The data 
model is implemented via XML Schema.  However, XML Schema does not provide sufficient 
structure and constraint to enable translating from a conceptual model to a schema and then to 
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instances of the concepts.  NIEM provides additional support for modeling concepts as schemas 
and provides rules for creating and connecting data that realizes those concepts.   

Underlying the NIEM data model are two namespaces: the structures namespace and the 

appinfo namespace.  These two namespaces provide schema components that serve two 
functions: 

1. They provide support for connecting structural definitions to concepts. 

2. They provide base components from which to derive structural definitions. 

These namespaces are distributed with the NIEM data model content but are not themselves 
considered to be content of the data model.  They are, instead, part of the structure on which 
the data model is built. 

7.1 xsd:schema Document Element Restrictions 

[Rule 7-1] (REF, EXT) 

 Within the schema, the document element xsd:schema MUST have application 
information appinfo:ConformantIndicator, with text content "true". 

Rationale 

 The appinfo:ConformantIndicator element is how NIEM-conformant schemas 
indicate that they are, in fact, NIEM-conformant.  Without such an indicator, 
conformance would have to be "guessed" by readers and processors. 

[Rule 7-2] (REF, SUB, EXT, CON) 

 Two XML Schema documents SHALL have the same value for attribute 
targetNamespace carried by the element xsd:schema, if and only if they 
represent the same set of components. 

[Rule 7-3] (REF, SUB, EXT, CON) 

 Two XML Schema documents SHALL have the same value for attribute 
targetNamespace carried by the element xsd:schema, and different values for 
attribute version carried by the element xsd:schema if and only if they are 
different views of the same set of components. 

Rationale 

 These rules embody the basic philosophy behind NIEM's use of namespaced 
components: A component is uniquely identified by its class (e.g. element, attribute, 
type), its namespace (a URI), and its local name (an unqualified string).  Any two 
matching component identifiers refer to the same component, even if the versions of 
the schemas containing each are different.  
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7.2 Annotations 

NIEM-conformant schemas define data models for the purpose of information exchange.  A 
major part of defining data models is the proper definition of the contents of the model.  What 
does a component mean, and what might it contain?  How should it be used?  NIEM-
conformant schemas contain the invariant part of the definitions for the data model.  The set of 
definitions includes: 

1. A text definition of each component.  This describes what the component means.  The 
term used in this specification for such a text definition is data definition. 

2. The structural definition of each component.  This is made up of XML Schema 
component definitions, along with certain application information (appinfo). 

When possible, meaning is expressed via XML Schema mechanisms: type derivation, element 
substitution, specific types and structures, as well as names that are trivially parseable.  Beyond 
that, NIEM-specific syntax must be used, as discussed in this section. 

7.2.1 Human-Readable Documentation 

By other rules, a schema component must contain at most one element xsd:annotation.  
An element xsd:annotation, in turn, contains at most elements  xsd:documentation 
and xsd:appinfo.  The content of the  first element xsd:documentation on a 
component is the data definition for the component. 

[Rule 7-4] (REF, EXT) 

 Within the schema, any element xsd:complexType  MUST be a documented 
component. 

[Rule 7-5] (REF, EXT) 

 Within the schema, any element xsd:simpleType  MUST be a documented 
component. 

[Rule 7-6] (REF, EXT) 

 Within the schema, any element xsd:element that is an immediate child of an 
element xsd:schema  MUST be a documented component. 

[Rule 7-7] (REF, EXT) 

 Within the schema, any element xsd:attribute that is an immediate child of an 
element xsd:schema  MUST be a documented component. 

[Rule 7-8] (REF, EXT) 

 Within the schema, any element xsd:enumeration MUST be a documented 
component. 

[Rule 7-9] (REF, EXT) 

 Within the schema, the document element xsd:schema MUST be a documented 
component. 
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Note that [Rule 5-4] applies [ISO 11179 Part 4] definition rules to documented components. 

[Rule 7-10] (REF, EXT) 

 Words or synonyms for the words within a data element definition SHALL NOT be reused 
as terms in the corresponding component name if those words dilute the semantics and 
understanding of, or impart ambiguity to, the entity or concept that the component 
represents.  

[Rule 7-11] (REF, EXT) 

 An object class SHALL have one and only one associated semantic meaning (i.e., a single 
word sense) as described in the definition of the component that represents that object 
class.  

[Rule 7-12] (REF, EXT) 

 An object class SHALL NOT be redefined within the definitions of the components that 
represent properties or subparts of that entity or class.  

Rationale 

 Data definitions should be concise, precise, and unambiguous without embedding 
additional definitions of data elements that have already been defined once elsewhere 
(such as object classes).  [ISO 11179 Part 4] says that definitions should not be nested 
inside other definitions.  Furthermore, a data dictionary is not a language dictionary.  It 
is acceptable to reuse terms (object class, property term, and qualifier terms) from a 
component name within its corresponding definition to enhance clarity, as long as the 
requirements and recommendations of [ISO 11179 Part 4]  are not violated.  This further 
enhances brevity and precision.  

[Rule 7-13] (REF, EXT) 

 A data definition SHALL NOT contain explicit representational or data typing information 
such as number characters, type of characters, etc., unless the very nature of the 
component can be described only by such information. 

Rationale 

 A component definition is intended to describe semantic meaning only, not 
representation or structure.  How a component with simple content is represented is 
indicated through the representation term and further refined through constraints.  
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Figure 7-1:  A definition that describes mathematical 
representation 

<xsd:element name="AngularMinuteValue" type="nc:AngularMinuteType"  

             nillable="true"> 

  <xsd:annotation> 

    <xsd:documentation> 

      A value that specifies a minute of a degree. The value comes  

      from a restricted range of 0 (inclusive) to 60 (exclusive). 

    </xsd:documentation> 

  </xsd:annotation> 

</xsd:element> 

In Figure 7-1, above, the component definition contains representational information because 
the component is mathematical and therefore requires such.  In Figure 7-2, below, the 
definition is incorrect and states unnecessary representational information about the data 
element.  nc:PersonSSNIdentification is not a social security number (SSN); it is a 

complex element (type nc:IdentificationType)  that contains a SSN identifier as well as 
other properties that describe a person’s SSN identifier (such as issue date, issue authority, 
etc.).  The phrase “9-digit” is incorrect and unnecessary because it applies only to the SSN 
identifier and should be applied as a length or pattern constraint on the identifier only.  

Figure 7-2:  A definition that describes syntactic 
representation 

<xsd:element name="PersonSSNIdentification" type="nc:IdentificationType"> 

  <xsd:annotation> 

    <xsd:documentation> 

      A social security number that references a person; a 9-digit  

      numeric identifier assigned to a living person by the United  

      States Social Security Administration.  

    </xsd:documentation> 

  </xsd:annotation> 

</xsd:element> 

[Rule 7-14] (REF, EXT) 

 A component definition SHALL begin with a standard opening phrase that depends on 
the class of the component per Table 7-1:  Standard Opening Phrases:  

Table 7-1:  Standard Opening Phrases 

Component Class Definition opening phrase 

Abstract element "A data concept for a…" 

Association element "A relationship…" 
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Component Class Definition opening phrase 

Association type "A data type for a 

relationship..." 

Augmentation element "Supplements…" 

Augmentation type "A data type that 

supplements..." 

Metadata element Either "Metadata about..." or 

"Information that further 

qualifies..." 

Metadata type "A data type for metadata 

about..." or "A data type for 

information that further 

qualifies..." 

Element with a date representation term "A date..." 

Element with a quantity representation term "A (optional adjective) 

count/number of..." 

Element with an image representation term "A(n) (optional adjective) 

image/picture/photograph 

of..." 

Element with an indicator representation term "True if...; false 

otherwise/if..." 

 

Element with an identification representation term "A(n) (optional adjective) 

identification..." 

Element with an ID representation term "An identifier..." 

Element with a status representation term "A(n) (optional adjective) 

status/state of..." 

Element with a name representation term "A name of..." 
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Component Class Definition opening phrase 

Element with a category text representation term "A kind of..." 

Element with a description text representation term "A description of..." 

Other element "A(n)..." 

Other type "A data type for a(n)..." 

Rationale 

 A standard opening phrase based on component class helps to ensure consistent 
definitions that appropriate for the type of component item being defined.  These 
opening phrases also provide a cue that facilitates recognition of the particular kind of 
component. 

7.2.2 Machine-Readable Annotations 

XML Schema provides application information schema components to provide for automatic 
processing and machine-readable content for schemas.  NIEM utilizes application information to 
convey information that is outside schema definition and outside human-readable text 
definitions.  NIEM uses application information to convey high-level data model concepts and 
additional syntax to support the NIEM conceptual model and validation of NIEM-conformant 
XML instances. 

NIEM defines a single namespace that holds components for use in NIEM-conformant schema 
application information.  This namespace is referred to as the appinfo namespace. 

[Definition: appinfo namespace] 

 The appinfo namespace is the namespace represented by the URI 
"http://niem.gov/niem/appinfo/2.0". 

The appinfo namespace defines elements which provide additional semantics and syntactic 
guidelines for components built by NIEM-conformant schemas. 

[Rule 7-15] (REF, EXT) 

 The schema SHALL import the appinfo namespace. 

Rationale 

 For uniformity, all NIEM-conformant schemas must import the appinfo namespace. 

[Definition: application information] 

 A component is said to have application information of some element E when the root 
element that defines the component has an immediate child element 
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xsd:annotation, which has an immediate child element xsd:appinfo, which has 
as an immediate child the element E. 

If a component is described as "having application information," this means that the application 
information elements under consideration are children of the element which defines the 
component. 

The majority of uses of application information from the appinfo namespace are described in 
the modeling rules for the specific component. 

7.2.2.1 Deprecation 

The appinfo schema provides a construct for indicating that a construct is deprecated.  A 
deprecated component is one whose use is not recommended.  A deprecated component is 
kept in a schema for support of older versions but should not be used in new efforts.  A 
deprecated component will be removed, replaced, or renamed in a later edition of a schema. 

[Definition: deprecated component] 

 In a particular NIEM-conformant namespace, a deprecated component is one whose use 
is not recommended, yet which is maintained in the schema for compatibility with 
previous versions of the namespace. 

[Rule 7-16] (REF, EXT) 

 A component that is deprecated SHALL be indicated as such by the component having 
application information appinfo:Deprecated, with an attribute value with a 

value of true. 

Rationale 

 Deprecation can allow version management to be more consistent; versions of schema 
may be incrementally improved without introducing validation problems and 
incompatibility.  As XML Schema lacks a deprecation mechanism, NIEM defines such a 
mechanism. 

7.2.2.2 Indicating Conformance 

The element appinfo:ConformantIndicator is used for two purposes: 

1. To indicate that a schema is conformant or that it represents a conformant namespace. 

2. To indicate that an imported schema is not conformant or represents a nonconformant 
namespace. 

The specific rules concerning this element appear in Section 7.1, xsd:schema Document 
Element Restrictions, and Section 7.7, Using External Schemas. 

7.2.2.3 Bases of Derived Components 

The appinfo namespace provides an annotation for indicating the base of a derived 

component.  This is expressed via the appinfo:Base application information. 
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[Rule 7-17] (REF, EXT) 

 Within the schema, the element appinfo:Base MAY be used in one of the following 
ways: 

1. By a type definition, to indicate the base type, or structures:Object or 
structures:Association. 

2. By an element declaration, to indicate the base element. 

 The element appinfo:Base SHALL NOT be used for any other purpose. 

Rationale 

 The appinfo:Base element is required to clarify semantics of types as object or 
association types, when such derivation is not otherwise derivable from the component 
definitions.   

[Rule 7-18] (REF, EXT) 

 Within the schema, the element appinfo:Base SHALL indicate, by namespace and 
name, one of the following: 

1. A NIEM-conformant schema component. 

2. structures:Object. 

3. structures:Association. 

[Rule 7-19] (REF, EXT) 

 Within the schema, an attribute appinfo:namespace owned by an element 

appinfo:Base SHALL have a value of either of the following: 

1. A namespace which is the target namespace of a NIEM-conformant schema. 

2. The structures namespace. 

[Rule 7-20] (REF, EXT) 

 Within the schema, an element appinfo:Base  that does not own an attribute 

appinfo:namespace SHALL refer to the target namespace of the schema in which it 
is used. 

[Rule 7-21] (REF, EXT) 

 Within the schema, an element appinfo:Base SHALL own an attribute 

appinfo:name.   

[Rule 7-22] (REF, EXT) 

  Within the schema, if an element appinfo:Base indicates a NIEM-conformant 

namespace, then the value of the attribute appinfo:name owned by the element 
appinfo:Base SHALL indicate a schema component in the indicated namespace. 
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[Rule 7-23] (REF, EXT) 

 Within the schema, if an element appinfo:Base indicates the structures 

namespace, then the value of the attribute appinfo:name owned by the element 

appinfo:Base SHALL have a value of one of the following: 

1. structures:Object. 

2. structures:Association. 

3. A schema component defined by the structures schema. 

Rationale 

 Together, this set of rules establishes the element appinfo:Base as a reference to 
either a NIEM-conformant schema component or to a special NIEM component, which 
acts as the base for the containing schema component. 

7.2.2.4 Application of Constructs 

NIEM-conformant schemas provide capability for modeling beyond that provided by basic XML 
Schema.  Two methods made available by NIEM are augmentations and metadata.  Both of 
these methods create schema components that may be applied to types in specific ways.  The 
applicability of these components to types is expressed with the appinfo:AppliesTo 
element. 

[Rule 7-24] (REF, EXT) 

 Within the schema, the element appinfo:AppliesTo MAY be used in any of the 
following ways: 

1. To indicate a base type to which an augmentation may be applied. 

2. To indicate a base type to which a metadata type may be applied. 

 The element appinfo:AppliesTo SHALL NOT be used for any other purpose. 

Rationale 

 The appinfo:AppliesTo  element is required to express constraints beyond those 
available within XML Schema.  Use of this element allows advanced processing of 
instances and schemas for type safety.  

[Rule 7-25] (REF, EXT) 

 Within the schema, the element appinfo:AppliesTo SHALL indicate a schema 
component by namespace and name. 

[Rule 7-26] (REF, EXT) 

 Within the schema, an attribute appinfo:namespace owned by an element 

appinfo:AppliesTo SHALL indicate the namespace of the type to which 

appinfo:AppliesTo refers.  The indicated namespace SHALL be defined by a NIEM-
conformant schema. 
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[Rule 7-27] (REF, EXT) 

 Given that the element appinfo:AppliesTo refers to a type, the applicability 
described by the element SHALL be understood to be the indicated type or a type 
transitively derived from the indicated type.   

[Rule 7-28] (REF, EXT) 

 Within the schema, an element appinfo:AppliesTo  that does not carry an 

attribute appinfo:namespace SHALL refer to the target namespace of the schema 
in which it is used. 

[Rule 7-29] (REF, EXT) 

 Within the schema, an element appinfo:AppliesTo SHALL carry an attribute 

appinfo:name.  The value of this attribute SHALL indicate the local name of a schema 
component within the namespace specified by the element. 

Rationale 

 Together, this set of rules establishes the element appinfo:AppliesTo as a 
reference to a NIEM-conformant schema component to which a NIEM construct may be 
applied. 

7.2.2.5 Targets of References 

NIEM provides references to avoid problems occurring when only XML element containment is 
available.  The appinfo:ReferenceTarget element specifies the type to which a 
reference element may be applied. 

[Rule 7-30] (REF, EXT) 

 Within the schema, the element appinfo:ReferenceTarget SHALL identify the 
XML Schema type definition of an element information item to which an instance of a 
reference element may validly refer.  The element appinfo:ReferenceTarget 
SHALL NOT be used for any other purpose.   

Rationale 

 This describes the meaning of a reference target.  The term type definition is as used in 
[XMLSchemaStructures], in the PSVI (post-schema-validation infoset) definition for an 
element information item.  The element appinfo:ReferenceTarget  is required 
to express the type of referenced content.  XML Schema does not provide this level of 
type safety.  

[Rule 7-31] (REF, EXT) 

 Within the schema, a reference element MUST have at most one instance of the 
element appinfo:ReferenceTarget. 
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Rationale 

 Content elements in XML Schema may have at most one type.  This rule ensures that 
reference elements follow the same pattern.   

[Rule 7-32] (REF, EXT) 

 Within the schema, the element appinfo:ReferenceTarget SHALL indicate a 
type definition schema component, by namespace and name. 

[Rule 7-33] (REF, EXT) 

 Within the schema, an attribute appinfo:namespace carried by an element 

appinfo:ReferenceTarget SHALL indicate the namespace of the referenced 
schema component.  The indicated namespace SHALL be defined by a reference or 
extension schema. 

[Rule 7-34] (REF, EXT) 

 Within the schema, an element appinfo:ReferenceTarget  that does not carry 
an attribute appinfo:namespace SHALL refer to the target namespace of the 
schema in which it is used. 

[Rule 7-35] (REF, EXT) 

 Within the schema, an element appinfo:ReferenceTarget SHALL carry an 
attribute appinfo:name.  The value of this attribute SHALL indicate the local name of 
a type definition schema component within the namespace specified by the element. 

Rationale 

 Together, this set of rules establishes the element appinfo:ReferenceTarget as a 
reference to a NIEM-conformant type definition schema component that a reference 
element instance may reference. 

7.3 Simple Type Definitions 

NIEM places very few restrictions on the definition of simple types in conformant schemas.  The 
use of lists should be reserved for cases where the data is fairly uniform. 

[Rule 7-36] (REF, SUB, EXT) 

 Within the schema, a simple type definition that uses xsd:list SHOULD NOT be 
defined if any member of the list requires a property or metadata that is different than 
other members of the list.  All members of the list SHOULD have the same metadata, 
and should be related via the same properties. 

Rationale 

 The members of a list are not individually addressable by NIEM metadata techniques.  
The members are also not individually addressable by properties; a property has a value 
of all the members of the list.  NIEM provides no method for individually addressing a 
member of a list.  If an individual member of a list needs to be marked up in a manner 
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different than other members of the list, the use of individual elements may be 
preferred to the definition of a list simple type.   

7.4 Complex Type Definitions 

Under XML Schema rules, a CCC (complex type with complex content) may not be the base type 
of a CSC (complex type with simple content), and a CSC may not be a base for a CCC.  Therefore, 
NIEM defines one pattern for defining a CCC and a different pattern for defining a CSC.  These 
patterns supply common base definitions that will be provided for CSCs and CCCs.  These 
patterns are established by the rules for use of xsd:extension in xsd:complexContent 
and xsd:simpleContent elements.  The relevant rules may be found in Section 6.5.2, 
Simple Content (CSC) Restrictions, and Section 6.5.3, Complex Content (CCC) Restrictions.  

[Rule 7-37] (REF, SUB, EXT) 

 Within the schema, a complex type definition SHALL be one of the following classes of 
types: 

1. An object type. 

2. A role type. 

3. An association type. 

4. A metadata type. 

5. An augmentation type. 

6. An adapter type. 

Rationale 

 This rule establishes the classes of NIEM complex types.  It is a limited set, each class 
with distinct semantics.   

The first five types are described in subsections below.  The adapter type is described in Section 
7.7, Using External Schemas. 

[Rule 7-38] (REF, SUB, EXT) 

 Within the schema, an element MUST NOT be introduced more than once into the direct 
content of a type definition.  This applies to content acquired through extension of base 
types.  This does not apply to a base element or derived element to one previously 
existing in the type definition. 

Rationale 

 This rule ensures that sequences of elements are simple sequences.  A type should not 
define, for example, a sequence of elements A, B, then A again.  Definitions should 
define, instead, what elements may be included, and their cardinality.  Specific orders 
should be expressed in instances, when necessary, by the use of the attribute 
structures:sequenceID. 
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7.4.1 Object Types 

[Definition: object type]  

 In a NIEM-conformant schema, an object type is a complex type definition, an instance 
of which asserts the existence of an object.  An object type represents some kind of 
object:  a thing with its own lifespan that has some existence.  The object may or may 
not be a physical object.  It may be a conceptual object. 

[Rule 7-39] (REF, EXT) 

 Within the schema, an object type SHALL be a complex type definition that either 
constitutes a NIEM-conformant component or for which there exists a NIEM-conformant 
component of one of the following forms: 

1. Has simple content, is based on a simple type, and contains the attribute group 
structures:SimpleObjectAttributeGroup, and has application 

information appinfo:Base of structures:Object. 

2. Has complex content, and is based on complex type 
structures:ComplexObjectType, and has application information 
appinfo:Base of structures:Object. 

3. Is a complex type that is derived from an object type, which is defined according 
to this rule. 

Rationale 

 Object types are at the core of NIEM.  They are built in a uniform way, from a simple 
design pattern: they take one of the two "root" forms outlined above, or  they are built 
from other object types, depending on whether they are of simple or complex content.  

7.4.2 Role Types 

NIEM differentiates between an object and a role of the object.  The term "role" is used here to 
mean a function or part played by some object.   

[Definition: role type]  

 A role type is a type that represents a particular function, purpose, usage, or role of an 
object.  

The simplest way to represent a role of an object is to use an element.  The following example 
represents the role of a person who performs an assessment: 

Figure 7-3:  An element definition that constitutes a role 
without the use of a role type 

<xsd:element name="AssessmentPerson" type="nc:PersonType"/> 

In many cases, there is a further need to represent characteristics and additional information 
associated with a role of an object.  In such cases, the above element is insufficient.  For 
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example, when a person is a driver involved in an automotive crash, the person plays the role of 
a j:CrashDriver.  In the case of a crash, there is more information associated with the role 
of the driver than just his identity for the role.  One such example would be the traffic violation 
code; j:CrashDriverViolationCode is frequently a characteristic property of a 

j:CrashDriver.  For this reason, a role type, j:CrashDriverType is created. 

A role type provides the location for information associated with an object playing a role.  A role 
type is used instead of the base type (in this case, nc:PersonType).  The role type holds 
information specific to the role but not specific to the context or the base object (the object 
that plays the role).  Developers of NIEM-conformant schemas should create and use role types 
whenever they have nonpersistent information specific to a base object.  Such information 
generally expires when the base object is no longer playing the role.  Information that is 
persistent to the base object probably does not belong in a role type. 

[Definition: RoleOf element] 

 In a NIEM-conformant schema, a RoleOf element is a reference element whose type is 
the base type of the role.  

Here is an example of a role type from the NIEM justice domain that uses a RoleOf element:   

Figure 7-4:  A definition of a role type 

<xsd:complexType name="CrashPersonType"> 

  ... 

  <xsd:sequence> 

    <xsd:element ref="nc:RoleOfPersonReference" minOccurs="0"  

      maxOccurs="unbounded"/> 

    ... 

    <xsd:element ref="j:CrashPersonInjury" minOccurs="0"  

      maxOccurs="unbounded"/> 

    ... 

    <xsd:element ref="j:AlcoholTestResultCode" minOccurs="0"  

      maxOccurs="unbounded"/> 

    ... 

  </xsd:sequence> 

  ... 

</xsd:complexType> 

nc:RoleOfPersonReference is defined as “An entity of whom the role object is a 
function.”  In this example, the role object is j:CrashPersonType and the base type of the 

role object is a nc:PersonType, the entity of whom j:CrashPersonType  is a function 
(per the definition above).  

This role object represents a particular role of a person: a person involved in a vehicular crash.  
It refers to the person of whom this object is a role through the  
nc:RoleOfPersonReference element.  It also includes additional information particular 
to the person's role in the crash. 

Here is an example of the CrashPerson  role type used in an instance: 
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Figure 7-5:  A role type used in an instance 

<j:CrashPerson> 

  <nc:RoleOfPersonReference s:ref="p1"> 

  <j:AlcoholTestResultCode>101</j:AlcoholTestResultCode> 

  <j:AlcoholTestResultQuantity>07</j:AlcoholTestResultCodeQuantity> 

</j:CrashPerson> 

<nc:Person s:id="p1"> 

  <nc:PersonBirthDate> 

    <nc:Date>1966-06-06</nc:Date> 

  </nc:PersonBirthDate> 

  <nc:PersonName> 

    <nc:PersonFullName>John Doe</nc:PersonFullName> 

  </nc:PersonName> 

</nc:Person> 

 

[Rule 7-40] (REF, SUB, EXT) 

 Within the schema, any element with a name beginning with the string RoleOf SHALL 
represent a base type, of which the containing type represents a role. 

Rationale 

 A RoleOf element references its corresponding base element.  The RoleOf label on 
the reference element ensures that a role object is distinguishable from other objects 
and its link to the associated base is also distinguishable from the additional properties 
that are characteristic of this role or that add information.   

NIEM does not require that there be only one RoleOf element within a single type.  However, 
the use of multiple RoleOf elements may not make sense; indeed, an example of a role that 
references two or more base types is very difficult (if not impossible) to conceive.  

An object should be a role of only a single object. However, there may be varied assertions of 
what object that might be or time constraints on the role.  Many exchanges may wish to restrict 
RoleOf elements to a single occurrence within a type. 

RoleOf elements are generally reference elements, targeting the base type.  That is, a 
RoleOf element is usually a reference element, not a content element.  

7.4.3 Association Types 

Within NIEM, an association is a specific relationship between objects.  Associations are used 
when a simple NIEM property  is insufficient to model the relationship clearly and when 
properties of the relationship exist that are not attributable to the objects being related. 

Here is an example of an association in an XML instance: 
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Figure 7-6:  An association in an instance 

<nc:GuardianAssociation> 

  <nc:PersonGuardianReference s:ref="p1"/> 

  <nc:PersonDependentReference s:ref="p2"/> 

</nc:GuardianAssociation> 

<nc:Person s:id="p1"> 

  <nc:PersonName> 

    <nc:PersonFullName>John Doe</nc:PersonFullName> 

  </nc:PersonName> 

</nc:Person> 

<nc:Person s:id="p2"> 

  <nc:PersonName> 

    <nc:PersonFullName>Jane Doe</nc:PersonFullName> 

  </nc:PersonName> 

</nc:Person> 

This example shows an association between a guardian and a dependent.  This relationship is 
defined by the element nc:GuardianAssociation, whose structure is defined by the type 

nc:GuardianAssociationType.  The type defines what an association relates, but the 
element defines the actual meaning of the association.   

An example of an association type defined by an XML Schema document follows.   

Note that the NIEM Core schema in NIEM 2.0 defines a type nc:AssociationType, which 
acts as the base type for all other association types defined within NIEM Core.  This is a 
convention adopted by the NIEM Core namespace but is not a requirement of the NDR.  
Implementers of NIEM-conformant schemas are not required to base association types on 
nc:AssociationType. 
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Figure 7-7:  A definition of an association type 

<xsd:complexType name="AssociationType"> 

  ... 

  <xsd:complexContent> 

    <xsd:extension base="s:ComplexObjectType"> 

      <xsd:sequence> 

        <xsd:element ref="nc:AssociationBeginDate" minOccurs="0"  

            maxOccurs="unbounded"/> 

        <xsd:element ref="nc:AssociationEndDate" minOccurs="0"  

            maxOccurs="unbounded"/> 

      </xsd:sequence> 

    </xsd:extension> 

  </xsd:complexContent> 

</xsd:complexType> 

<xsd:complexType name="GuardianAssociationType"> 

  ... 

  <xsd:complexContent> 

    <xsd:extension base="nc:AssociationType"> 

      <xsd:sequence> 

        <xsd:element ref="nc:PersonGuardianReference" minOccurs="0"  

            maxOccurs="unbounded"/> 

        <xsd:element ref="nc:PersonDependentReference" minOccurs="0"  

            maxOccurs="unbounded"/> 

      </xsd:sequence> 

    </xsd:extension> 

  </xsd:complexContent> 

</xsd:complexType> 

<xsd:element name="GuardianAssociation" type="nc:GuardianAssociationType"  

    nillable="true"> 

  ... 

</xsd:element> 

This schema fragment shows the definition of a generic AssociationType, which contains a 
begin and end date.  It then defines a specific association type, which contains the structure 
required to express guardianship.  This is followed by the definition of an element that 
expresses the semantics of the guardian relationship. 

[Definition: association type]  

 In a NIEM-conformant schema, an association type is a type that establishes a 
relationship between objects, along with the properties of that relationship.  An 
association type provides a structure that does not establish existence of an object but 
instead specifies relationships between objects. 

[Definition: association] 

 In a NIEM-conformant schema, an association is an element whose type is an 
association type. 

[Rule 7-41] (REF, EXT) 

 Within the schema, an association type SHALL be a complex type definition that either 
constitutes a NIEM-conformant component or for which there exists a NIEM-conformant 
component definition.  The NIEM-conformant component definition SHALL have one of 
the following forms: 
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1. Has complex content, is based on the complex type 
structures:ComplexObjectType, and has application information 

appinfo:Base of structures:Association. 

2. Is a complex type that is derived from an association type, which is defined according 
to this rule. 

Rationale 

 Associations within reference schemas, extensions schemas, and exchange schemas are 
easily identifiable as such and have a commonly defined base type.  For subset schemas, 
the NIEM-conformant definition may be located in a primary schema and then 
identified. 

[Rule 7-42] (REF, SUB, EXT) 

 Given that an association type defines a relationship between a set of participants, 
within an association type definition, any element that represents a participant SHALL 
be a reference element. 

Rationale 

 Associations are intended to relate objects defined elsewhere.  They are not intended to 
carry content of participant objects.   

7.4.4 Metadata Types 

Within NIEM, metadata is defined as “data about data.”  This may include information such as 
the security of a piece of data or the source of the data.  These pieces of metadata may be 
composed into a metadata type.  The types of data to which metadata may be applied may be 
constrained. 

[Definition: metadata type]  

 A metadata type describes data about data, that is, information that is not descriptive of 
objects and their relationships, but is descriptive of the data itself.  It is useful to provide 
a general mechanism for data about data.  This provides required flexibility to precisely 
represent information. 

[Definition: metadata element]  

 Within a NIEM-conformant schema, a metadata element is an element whose type is a 
metadata type.  There are specific limitations on the meaning of a metadata element in 
an instance; it does not establish existence of an object, nor is it a property of its 
containing object. 

[Rule 7-43] (REF, SUB, EXT) 

 Within the schema, a metadata type SHALL contain elements appropriate for a specific 
class of data about data. 
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[Rule 7-44] (REF, SUB, EXT) 

 Within the schema, a metadata type and only a metadata type SHALL be derived directly 
from structures:MetadataType. 

Rationale 

 A metadata type establishes a specific, named aggregation of data about data.  Any type 
derived from structures:MetadataType is a metadata type.  Metadata types 
should not be derived from other metadata types.  Such metadata types should be used 
as is and additional metadata types defined for additional content. 

[Rule 7-45] (REF, EXT) 

 Within the schema, a metadata type MAY have application information 
appinfo:AppliesTo, indicating the NIEM-conformant object, association, or 
external adapter types to which the metadata applies. 

[Rule 7-46] (REF, EXT) 

 Within the schema, a metadata type that does not have application information 
appinfo:AppliesTo MAY be applied to any object type, association type, or 
external adapter type. 

Rationale 

 Metadata may be constrained to be applicable to only specific types, or it may be 
defined to be applicable to any type.  The source of a piece of data and the security 
classification of a piece of data are examples of metadata that may be considered 
globally applicable.  

7.4.5 Augmentation Types 

Builders of domains and extensions to NIEM distribution schemas need to be able to define 
extensions to types.  However, extension of types by multiple domain schemas and extension 
schemas proves problematic, as it results in multiple extensions of a single type.  XML Schema 
does not provide for multiple types of an instance; consequently, such a method results in 
duplication of base type content and a need to resolve "same-as" relationships between the 
instances of the various derived types. 

Instead, it is preferable for domains and extensions to provide augmentations.  These are 
reusable types and elements of those types, which may be added to an object class, in a single 
extended type, by the author of a NIEM-conformant schema.  This avoids the problem of 
multiple extended types but allows domains and extensions to define reusable extensions.   

Augmentation types such as dom:PersonAugmentationType (where dom: is a NIEM 
domain namespace) exist to extend NIEM Core types such as nc:PersonType without 
creating a new specialized object within the model.  Augmentation types are never applied 
within the model to the types they are designed to augment.  Doing so would restrict reusing 
and combining these augmentations.   
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Instead, augmentation should be applied within IEPDs.  So in an IEPD (NOT within NIEM), base 
nc:PersonType may be extended, for example, as my-iepd:PersonType by adding 

elements  a:PersonAugmentation and b:PersonAugmentation.  As a result, my-
iepd:PersonType will contain all the properties in nc:PersonType plus the properties in 

both of the elements a:PersonAugmentation and b:PersonAugmentation,  which, 
in turn, each contain their respective sets of subelements.   

All NIEM augmentation types extend the abstract type structures:AugmentationType.  

Therefore, all augmentation types automatically contain the attributes structures:id and 
structures:metadata for referencing and metadata, respectively.  NIEM also provides the 

abstract element structures:Augmentation (of type 
structures:AugmentationType) as the common substitution group head for all 
augmentation elements.  An augmentation element placed into this substitution group can be 
used in an instance wherever structures:Augmentation occurs in the corresponding 
IEPD schema.  The user must follow NIEM naming conventions for augmentation component 
names and must place new augmentation elements into the structures:Augmentation 
substitution group.  Further, if an augmentation element cannot be applied to all types in the 
model, then the user must document those types that the new augmentation element can be 
applied to using the appinfo:AppliesTo element.    

[Definition: augmentation type]  

 An augmentation type is a complex type that provides a reusable block of data that may 
be added to object types or association types. 

 [Definition: augmentation]  

 An augmentation of a NIEM-conformant object type is a block of additional data added 
to an object type to carry additional data beyond that of the original object definition.   

[Rule 7-47] (REF, SUB, EXT) 

 An augmentation type: 

1. SHALL be transitively derived from structures:AugmentationType. 

2. SHALL contain elements that represent properties to be applied to a base type. 

Rationale 

 A base type is the type to which an augmentation is to be applied.  An augmentation 
may be applied to any number of types.  Base types are assigned by augmentation 
elements. 

[Rule 7-48] (REF, SUB, EXT) 

 Within the schema, an augmentation element definition: 

1. SHALL have a type that is an augmentation type. 

2. SHALL use the substitutionGroup attribute such that it is transitively 

substitutable for the element structures:Augmentation. 
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 An element that is not an augmentation element SHALL NOT meet either of the above 
criteria. 

Rationale 

 An augmentation is trivially identifiable as such.  The use of the common 
structures:Augmentation element allows message builders to optionally delay 
specifying augmentations to be applied to a type until runtime. 

[Rule 7-49] (REF, EXT) 

 Within the schema, an element definition for an augmentation element MAY contain 
one or more instances of the element structures:AppliesTo as application 
information to specify types to which the augmentation element applies. 

[Rule 7-50] (REF, EXT) 

 Within the schema, an element definition for an augmentation element that does not 
contain any instances of the element structures:AppliesTo MAY be applied to 
any object or association type. 

Rationale 

 These rules allow schema builders to establish applicability for augmentations.  An 
augmentation may be applicable to specific types. 

 Users who wish to apply an augmentation type to a given object type may do so by 
creating a new augmentation element, applicable to the object type.   

7.5 Component Usage 

[Rule 7-51] (REF, SUB, EXT) 

 Any type definition referenced by a component within the schema MUST be from one of 
the following: 

1. The schema being defined. 

2. A namespace imported as NIEM-conformant. 

3. The XML Schema namespace. 

4. The structures namespace. 

Rationale  

 NIEM-conformant schemas are based on other NIEM-conformant schemas and the 
supporting namespaces.  This simplifies processing and understanding of data. 

[Rule 7-52] (REF, SUB, EXT) 

 Any element declaration referenced by a component within the schema MUST be from 
one of the following: 

1. The schema being defined. 
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2. A namespace imported as NIEM-conformant. 

3. The structures namespace. 

4. An external namespace, in accordance with the rules for external schemas as 
specified by this specification. 

[Rule 7-53] (REF, SUB, EXT) 

 Any attribute declaration referenced by a component within the schema MUST be from 
one of the following: 

1. The schema being defined. 

2. A namespace imported as NIEM-conformant. 

3. The structures namespace. 

4. The XML namespace. 

5. An external namespace, in accordance with the rules for external schemas as 
specified by this specification. 

Rationale 

 NIEM-conformant schemas are based on other NIEM-conformant schemas.  All 
attributes and elements must be from NIEM-conformant schemas, the structures 
namespace, the XML namespace, or an external namespace.  This applies to elements 
referenced for substitution groups as well.  It does not apply to content of the schema 
(e.g., within annotations) or to the XML Schema declarations themselves.  It applies only 
to attributes and elements referenced by the XML Schema components. 

7.6 NIEM Structural Facilities 

NIEM provides the structures schema that contains base types for types defined in NIEM-
conformant schemas.  It provides base elements to act as heads for substitution groups.  It also 
provides attributes that provide facilities not otherwise provided by XML Schema.  These 
structures should be used to augment XML data.  The structures provided are not meant to 
replace fundamental XML organization methods; they are intended to assist them. 

[Definition: structures namespace] 

 The structures namespace is the namespace represented by the URI 
"http://niem.gov/niem/structures/2.0". 

The structures namespace is a single namespace, separate from namespaces that define NIEM-
conformant data.  This document refers to this content via the prefix structures.   

[Rule 7-54] (REF, EXT) 

 The schema MUST import the NIEM structures namespace. 
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Rationale 

 For uniformity, all NIEM-conformant schemas must import the structures 
namespace. 

[Rule 7-55] (REF, SUB, EXT, INS) 

 The schema or instance MUST use content within the NIEM structures namespace 
as specified in this document and ONLY as specified by this document. 

Rationale 

 This rule further enforces uniformity and consistency by mandating use of the NIEM 
structures namespace as is, without modification.  Users are not allowed to insert 
types, attributes, etc. that are not specified by this document (the NDR).    

7.6.1 Sequence ID 

NIEM provides the attribute structures:sequenceID for specification of sequential order 
of instances, when a complex type's defined element sequence is insufficient.  A limitation of 
XML Schema is that control of cardinality (the number of times an element may occur in an 
instance) requires the use of sequences of elements.  This use of xsd:sequence defines the 
elements occurring within a type in a specific order.  This order may not match the desired 
sequential order of the represented entities. 

An example would be proper names, where the natural order of the names may not appear in 
the same order as the sequence defined by a complex type.  In this case, the structure defined 
by nc:PersonNameType defines a sequence of name parts, including given name followed by 
surname.  This works well enough for Western names: 

Figure 7-8:  An instance of a name type 

<nc:Person> 

  <nc:PersonName> 

    <nc:PersonGivenName>John</nc:PersonGivenName> 

    <nc:PersonSurName>Doe</nc:PersonSurName> 

  </nc:PersonName> 

</nc:Person> 

However, it does not work well for Chinese names, where the surname precedes the given 
name.  For example, the basketball player Yao Ming has a given name of Ming and a surname of 
Yao.  This cannot be expressed by the simple sequence used above because it lists the given 
name before the surname.  To express the proper sequence of the data, use the 
structures:sequenceID attribute. 
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Figure 7-9:  An instance of a name type that uses 
structures:sequenceID 

<nc:Person> 

  <nc:PersonName> 

    <nc:PersonGivenName s:sequenceID="2">Ming</nc:PersonGivenName> 

    <nc:PersonSurName s:sequenceID="1">Yao</nc:PersonSurName> 

  </nc:PersonName> 

</nc:Person> 

Without the structures:sequenceID attribute, this example would create a dilemma: 
which name to represent correctly, and which to represent incorrectly?  The 
structures:sequenceID attribute allows the schema sequence to be separated from the 
implied meaning. 

As another example, when using a derived type, within an instance, the base type's elements 
occur first, followed by any elements added by extension.  If those elements need to be 
interleaved into the existing structure for the proper meaning to be conveyed, the 
structures:sequenceID attribute is called for. 

The structures:sequenceID  attribute allows instances to express the sequential order 

of data relative to a parent.  The order of data is as yielded by the xsl:sort element, which is 
defined by XSLT, with data-type of xsl:number, and order of ascending.  Content with 

identical structures:sequenceID  values has undefined order.   

[Rule 7-56] (REF, SUB, EXT) 

 Within the schema, a complex type definition SHALL include the attribute 
structures:sequenceID if the order of an occurrence of the type, within its 
parent, relative to its siblings, is meaningful and pertinent and if the schema does not 
specify the desired sequential order. 

Rationale 

 This rule indicates that, if order is meaningful and the schema will not always represent 

the desired order, then data modelers need to include sequenceID  to allow the 
proper order to be represented in instances. 

Rules on the use of sequenceID may be found in the rules on conformant instances in 
Section 8.4, Component Ordering. 

7.6.2 Reference Elements 

In XML instances, relationships between data objects are expressed as XML elements: 

1. Data objects are expressed as XML elements. 

2. XML elements contain attributes and other elements. 

In this way, there is generally some implicit relationship between the outer element (the 
"containing" element, also known as the parent element) and the inner elements (the contained 
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elements, also known as the child elements).  Such expression of relationships is said to be by 
containment.   

Expression of all relationships via element containment is not always possible.  Situations that 
cause problems include: 

• Circular relationships.  For example, suppose that object 1 has a relationship to object 2 
and object 2 has a relationship to object 1.  Expressed via containment, this relationship 
would result in infinite recursive descent. 

• Repeated relationships.  For example, suppose object 1 has a relationship to object 2 
and object 3 has a relationship to object 2.  Expressed via containment, this would result 
in a duplicate of object 2. 

A method that solves this problem is the use of references.  In a C or assembler, a pointer would 
be used.  In C++, a reference might be used.  In Java, a reference value might be used.  The 
method defined by the XML standard is the use of ID and IDREF.  An ID refers to an IDREF.  NIEM 
uses this method and assigns to it specific semantics. 

[Definition: reference element] 

 A reference element is an element that refers to its value by a reference attribute 
instead of carrying it as content.   

[Rule 7-57] (REF, SUB, EXT) 

 Within the schema, a reference element and only a reference element SHALL be defined 
to be of type structures:ReferenceType.   

Rationale 

 Reference elements must be of the reference type, and elements of the reference type 
must be reference elements.  This rule ensures that users always create reference 
elements using structures:ReferenceType and cannot use 
structures:ReferenceType for any other purpose.  

[Rule 7-58] (REF, SUB, EXT) 

 Within the schema, a complex type SHALL NOT be defined such that an instance of that 
type owns the attribute structures:ref. 

Rationale 

 The use of references is limited to reference elements.  This constrains the semantics 
and syntax of references within NIEM instances.  Only 
structures:ReferenceType may use structures:ref, which is the only 
means for referencing within NIEM-conformant instances. 

[Rule 7-59] (REF, SUB, EXT) 

 Within the schema, any two elements of the form 

 NCName 
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 and  

  NCNameReference 

 where the string value of NCName is the same in both forms, SHALL be defined to have 
identical semantics.  NIEM recognizes no difference in meaning between a reference 
element and an element that is not a reference element. 

Rationale 

 NIEM-conformant data instances may use concrete data elements and reference 
elements as needed, to represent the meaning of the fundamental data.  There is no 
difference in meaning between reference and concrete data representations.  The two 
different methods are available for ease of representation.  No difference in meaning  
should be implied by the use of one method or the other.   

 Assertions that indicate "included" data is intrinsic, while referenced data is extrinsic, are 
not valid and are not applicable to NIEM-conformant data instances and data definitions.  

[Rule 7-60] (REF, EXT) 

 Within the schema, if both elements NCName and NCNameReference exist, then the 

appinfo:ReferenceTarget of any NCNameReference element MUST be the 
type of the element NCName. 

Rationale 

 By [Rule 7-59], any such pair of elements, NCName and NCNameReference, will have 

identical semantics.  This rule ensures that an NCNameReference element is 
documented to refer to the appropriate type (the type of the corresponding NCName 
element) and no other.  

The NIEM structures schema defines structures:ReferenceType to require the use of 
an attribute structures:ref, which is of type IDREF as specified by 
[XMLSchemaStructures].  According to the rules of XML, such an attribute must contain a value 
that is represented by an attribute of type ID.  In NIEM-conformant instance, the targets of 
IDREFs are expected to be values of the attribute structures:id. 

The NIEM structures schema defines structures:ReferenceType such that it is 
unavailable as a base for extension or restriction. 

The NIEM structures schema defines structures:ReferenceType such that it has an 
optional attribute structures:id.  This may be used to describe additional metadata or 
information about the relationship described by an element of type 
structures:ReferenceType. 

Within a NIEM-conformant instance, the element referenced by an attribute 
structures:ref  must be of a type valid for the object of the fundamental element of the 

reference element.  The attribute structures:ref  is discussed in more detail in Section 
8.3. 
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7.7 Using External Schemas 

There are a variety of commonly used standards that are represented in XML Schema.  Such 
schemas are generally not NIEM-conformant.  NIEM-conformant schemas may reference 
components defined by these external schemas.  NIEM-conformant components may be 
constructed from schema components that are not NIEM-conformant.   

 [Definition: external schema]  

 An external schema is any schema that is not a supporting schema and that is not NIEM-
conformant.  

Note that the supporting schemas structures and appinfo are nonconformant because 
they define the fundamental framework on which NIEM is built. However, they are not 
considered external schemas because of their supporting nature and are thus excluded from 
this definition.   

NIEM-conformant schemas may work with external schemas by creating external adapter types. 

A single method is used to integrate external components into NIEM-conformant schemas:  
NIEM-conformant types are constructed from the external components.   

Figure 7-10:  Use of external components to create a 
NIEM-conformant type 

 

Components defined by external schemas are called external components.  A NIEM-conformant 
type may use external components in a specific way: to construct a NIEM-conformant type from 
external components.  The goal in this method is to preserve as a single unit a set of data that 
embodies a single concept from an external standard.   

For example, a NIEM-conformant type may be created to represent a bibliographic reference 
from an external standard.  Such an object may be composed of multiple elements and types 
from the external standard.  These pieces are put together to form a single NIEM-conformant 
type.  For example, an element representing an author, a book, and a publisher may be included 
in a single bibliographic entry.   
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A NIEM-conformant type built from these components may be used as any other NIEM-
conformant type.  That is, elements may be constructed from such a type, and those elements 
are fully NIEM-conformant. 

To construct such a component, a NIEM-conformant schema must first import an external 
schema. 

[Rule 7-61] (REF, EXT) 

 Within the schema, an element xsd:import that imports a namespace defined by an 
external schema MUST have the application information 
appinfo:ConformantIndicator, with a value of false. 

Rationale  

 Knowledge of the conformance of an imported schema allows processors to understand 
the semantics of referenced components, without additional processing.  Namespaces 
imported into NIEM-conformant schemas are assumed to be conformant unless 
otherwise indicated. 

[Rule 7-62] (REF, EXT) 

 Within the schema, an element xsd:import that imports a namespace defined by an 
external schema MUST be a documented component. 

Rationale 

 A NIEM-conformant schema has well-known documentation points.  Therefore, a 
schema that imports a NIEM-conformant namespace need not provide additional 
documentation.  However, when an external schema is imported, appropriate 
documentation must be provided at the point of import because documentation 
associated with external schemas is undefined and variable. In this particular case, 
documentation of external schemas is required at their point of use in NIEM. 

[Definition: adapter type]  

 An adapter type is a NIEM-conformant type that adapts external components for use 
within NIEM.  An adapter type creates a new class of object that embodies a single 
concept composed of external components.  A NIEM-conformant schema defines an 
adapter type. 

[Rule 7-63] (REF, EXT) 

 Within the schema, an adapter type MUST have application information 
appinfo:ExternalAdapterTypeIndicator with a value of true.  A type 
that is not an adapter type SHALL NOT contain that indicator. 

Rationale 

 This rule flags as external adapters those types that may contain external content.  This 
allows for easier processing. 
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[Rule 7-64] (REF, SUB, EXT) 

 Within the schema, an adapter type MUST be an immediate extension of type 
structures:ComplexObjectType. 

Rationale 

 The adapter type must contain the content defined for any NIEM component.  The type 
structures:ComplexObjectType provides such content 

[Rule 7-65] (REF, SUB, EXT) 

 Within the schema, an adapter type MUST be composed of only elements and attributes 
from an external standard. 

Rationale 

 An adapter type should contain the information from an external standard to express a 
complete concept.  This expression should be composed of content entirely from an 
external schema.  Most likely, the external schema will be based on an external standard 
with its own legacy support. 

In the case of an external expression that is in the form of model groups, attribute groups, or 
types, additional elements and type components may be created in an external schema, and 
the adapter type may use those components. 

[Rule 7-66] (REF, EXT) 

 Within the schema, an element reference used in an adapter type definition MUST be a 
documented component. 

[Rule 7-67] (REF, EXT) 

 Within the schema, an attribute reference used in an adapter type definition MUST be a 
documented component. 

Rationale 

 In normal (conformant) type definition, a reference to an attribute or element is a 
reference to a documented component.  Within an adapter type, the references to the 
attributes and elements being adapted are references to undocumented components.  
These components must be documented to provide comprehensibility and 
interoperability.  Since documentation made available by nonconformant schemas is 
undefined and variable, documentation of these components is required at their point 
of use, within the conformant schema. 

[Rule 7-68] (REF, SUB, EXT) 

 Within the schema, an adapter type MUST NOT be extended or restricted. 

Rationale 

 Adapter types are meant to stand alone; each type expresses a single concept from an 
external schema, and adapter types are maintained in separate schemas that only 
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contain adapter types. In this way, processors may easily switch modes, processing 
NIEM-conformant content in one way, and external content in another. 

7.8 NIEM Subset Schemas 

Subset schemas are schemas that are based on other NIEM-conformant schemas but have been 
modified for any of several reasons.  A subset schema may be created that limits what is 
considered valid data to a subset of what is valid against the base schema.  The subset schema 
may also remove constructs from the schema that do not affect XML Schema validation of 
instances against the schema, which may include removing documentation, appinfo 
annotations, and comments. 

[Rule 7-69] (SUB) 

 The value of the targetNamespace attribute owned by the xsd:schema document 
element of the subset schema must be the same as the value of the 
targetNamespace attribute owned by the xsd:schema document element of the 
reference schema. 

[Rule 7-70] (SUB) 

 The schema must be constructed such that any instance that is XML Schema valid 
against the schema must also be XML Schema valid against the base schema. 

Rationale 

 A subset schema is a briefer, abridged form of its base schema.  The subset schema is 
intended to stand in the place of the base schema for the purpose of XML Schema 
validation in many situations.  As such, it is imperative that the subset schema sustain 
the constraints expressed by the base schema.  The NDR does not specify what 
mechanisms a subset schema must use to support the constraints of the base schema. 

7.9 Container Elements 

All NIEM properties establish a relationship between the object holding the property and the 
value of the property.  For example, an activity object of type nc:ActivityType may have 

an element nc:ActivityDescriptionText.  This element will be of type 
nc:TextType and represents a NIEM property owned by that activity object.   An occurrence 
of this element within an activity object establishes a relationship between the activity object 
and the text: the text is the description of the activity. 

In a NIEM-conformant instance, an element establishes a relationship between the object that 
contains it and the element’s value. This relationship between the object and the element may 
be semantically strong, such as the text description of an activity in the previous example, or it 
may be semantically weak, with its exact meaning left unstated.  In NIEM, the contained 
element involved in a weakly defined semantic relationship is commonly referred to as a 
container element.   
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A container element establishes a weakly defined relationship with its containing element.  For 
example, an object of type nc:ItemDispositionType may have a container element 

nc:Item of type nc:ItemType.  The container element nc:Item does not establish what 
relationship exists between the object of nc:ItemDispositionType and itself.  There 
could be any of a number of possible semantics between an object and the value of a container 
element.  It could be a contained object, a subpart, a characteristic, or some other relationship.  
The appearance of this container element inside the nc:ItemDispositionType merely 
establishes that the disposition has an item. 

The name of the container element is usually based on the NIEM type that defines it:  
nc:PersonType uses a container element nc:Person, while nc:ActivityType uses a 
container element nc:Activity.  The concept of an element as a container element is a 
notional one. 

There are no formalized rules addressing what makes up a container element.  A container 
element is vaguely defined and carries very little semantics about its context and its contents.  
Accordingly, there is no formal definition of container elements in NIEM: There are no specific 
artifacts that define a container element; there are no appinfo or other labels for container 
elements.   

The appearance of a container element within a NIEM type carries no additional semantics 
about the relationship between the property and the containing type.  The use of container 
elements indicates only that there is a relationship; it does not provide any semantics for 
interpreting that relationship.  

For example, a NIEM container element nc:Person would be associated with the NIEM type 

nc:PersonType.  The use of the NIEM container element nc:Person in a containing NIEM 
type indicates that a person has some association with the instances of the containing NIEM 
type. But because the nc:Person container element is used, there is no additional meaning 
about the association of the person and the instance containing it. While there is a person 
associated with the instance, nothing is known about the relationship except its existence. 

The use of the Person container element is in contrast to a NIEM property named 
nc:AssessmentPerson, also of NIEM type nc:PersonType.  When the NIEM property 

nc:AssessmentPerson is contained within an instance of a NIEM type, it is clear that the 
person referenced by this property was responsible for an assessment of some type, relevant to 
the exchange being modeled.  The more descriptive name, nc:AssessmentPerson, gives 
more information about the relationship of the person with the containing instance, as 
compared with the semantic-free implications associated with the use of the nc:Person 
container element.  

When a NIEM-conformant schema requires a new container element, it may define a new 
element with a concrete type and a general name, with general semantics.  Any schema may 
define a container element when it requires one.  NIEM-conformant schemas may also create 
reference elements with general semantics.  For example, an element 
nc:PersonReference will carry the same general, container-like meaning as an element 

nc:Person. 
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8 XML Instance Rules  

This specification attempts to restrict XML instance data as little as possible while still 
maintaining interoperability.  Section 2.6, NIEM-Conformant XML Documents and Elements, 
defines terminology for NIEM-conformance and XML documents. 

The NIEM does not require a specific encoding or specific requirements for the XML prologue, 
except as specified by [XML]. 

8.1 Instance Validation 

[Rule 8-1] (INS) 

 The  XML document MUST be schema-valid, assessed with reference to the schema 
composed of the reference schemas, extension schemas, exchange schemas, utility 
schemas, and external schemas for the relevant namespaces.   

Rationale 

 The schemas that define the exchange must be authoritative.  Each is the reference 
schema, extension schema, or exchange schema for the namespace it defines.  
Application developers may use other schemas for various purposes, but for the 
purposes of determining conformance, the authoritative schemas are relevant. 

 This rule should not be construed to mean that XML validation must be performed on all 
XML instances as they are served or consumed; only that the XML instances validate if 
XML validation is performed.  The XML Schema component definitions specify XML 
documents and element information items, and the instances should follow the rules 
given by the schemas, even when validation is not performed. 

NIEM embraces the use of XML Schema instance attributes, including xsi:type, xsi:nil, 

and xsi:schemaLocation, as specified by [XMLSchemaStructures].   

8.2 Instance Meaning 

[Rule 8-2] (INS) 

 Within the instance, the meaning of an element with no content is that additional 
properties are not asserted.  There SHALL NOT be additional meaning interpreted for an 
element with no content. 

Rationale 

 Elements without content only show a lack of asserted information.  That is, all that is 
asserted is what is explicitly stated, through a combination of XML instance data and its 
schema.  Data that is not present makes no claims.  It may be absent due to lack of 
availability, lack of knowledge, or deliberate withholding of information.  These cases 
should be modeled explicitly, if they are required.   
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8.3 Component Representation 

NIEM uses element containment for the majority of its data representation needs; that is, an 
element containing another element.  In general, one object (the content of the outer element) 
has a relationship (defined by the name of the inner element) to another object (the content of 
the inner element).  

Figure 8-1:  Example of element containment  

<OuterElement> 

  <!-- object1: the content of outer element --> 

  <InnerElement> 

     <!-- object2: the content of inner element --> 

  </InnerElement> 

  <!-- object1, continued --> 

</OuterElement> 

This use of the element containment method has limitations.  Specifically, recursive and 
symmetric relationships (direct or transitive) create difficulties, such as repetition of data and 
resolution of duplicates. 

To avoid these problems, NIEM allows references between elements.  In this way, one object 
(the content of one element) has a relationship (defined by the name of the inner element) to 
another object (the content of an element referenced by an attribute of the inner element). 

Figure 8-2:  Example of element reference 

<OuterElement> 

  <!-- object1: the content of outer element --> 

  <InnerElementReference structures:ref="object2"/> 

  <!-- object1, continued --> 

</OuterElement> 

 

<OtherElement structures:id="object2"> 

   <!-- object2: the content of other element --> 

</OtherElement> 

[Rule 8-3] (INS) 

 Within an element instance, there SHALL NOT be any difference in meaning between a 
property asserted via element containment and a property asserted by element 
reference, except as explicitly described by the semantics of the elements involved. 

Rationale  

 There is no difference in meaning between relationships established by containment and 
those established by reference.  They are simply two mechanisms for expressing 
connections between objects.  Neither mechanism implies that properties are intrinsic 
or extrinsic.  Such characteristics must be explicitly stated in property definitions. 

Being of type xsd:ID and xsd:IDREF, validating schema parsers will perform certain checks 

on the values of structures:id and structures:ref.  Specifically, no two IDs may 



NIEM  NIEM Naming and Design Rules 

  85 

have the same value.  This includes structures:id and other IDs that may be used in an 

instance.  Also, any value of structures:ref must also appear as the value of an ID. 

[Rule 8-4] (INS) 

 Given that the IDREF that is the value of an attribute structures:ref matches the 
value of an ID attribute on some element in the XML document, that ID attribute must 
be an occurrence of the attribute structures:id. 

Rationale 

 This states that in NIEM-conformant content, structures:ref attributes must refer 

to structures:id attributes.  By [XML], an IDREF is required to reference an ID.  This 
rule ensures that the target of a reference is a NIEM ID for easier processing of XML 
documents. 

Reference element definitions may include constraints on the type of object that may be 
referenced by that element. 

[Rule 8-5] (INS) 

 Within an element instance, given that a reference element is restricted to a target type 
T, any attribute structures:ref MUST reference an element that has a type 
definition of type T or that is derived from type T. 

Rationale 

 This rule says that the type of the object pointed to by a structures:ref  attribute 
must be of a type specified by the reference element definition.  The restriction of types 
is defined in the application information of the reference element definition by the use 
of the appinfo:ReferenceTarget attribute.  The definition of reference is as 
given in [XMLInfoSet], in the description of attribute information items. 

8.4 Component Ordering 

An instance may express the natural order of components by using the order of content within 
an XML file.  It may also use the structures:sequenceID to indicate the order of 
components.   

[Rule 8-6] (INS) 

 The order of elements that are children of an element SHALL be presented as if their 
sequential order is as follows: 

1. First, elements owning an attribute structures:sequenceID, in the order that 

would be yielded with their sequence IDs sorted via sort element as defined by 
[XSLT], with a data type of number and an order of ascending. 

2. Following those elements, the remaining elements, in the order in which they occur 
within the XML instance. 
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Rationale 

 Because of NIEM's use of structured, defined types and its use of xsd:sequence, as 
well as various representation mechanisms, the order of data within an XML instance 
may require more precise definition and may vary from instance to instance.  The true 
order of objects (such as parts of a name, lines in an address, or parts of a phone 
number) may need an explicit method to define their order.   

 In this definition, the term "presented" may mean presentation to the user, reports, or 
transfer to other data systems.  It is meaningful only when the order of appearance of 
items within a sequence is expressed.  Such an order is only the default for the content 
within an instance.  Any meaningful sorting or other processing may overrule it. 

[Rule 8-7] (REF, EXT, INS) 

 Within a schema or instance, the attribute structures:sequenceID SHALL NOT be 
interpreted as meaningful beyond an indicator of sequential order of an object relative 
to its siblings. 

Rationale 

 Siblings of a data item are items that have the same parent.  Note that, using the 
reference and relationships mechanisms, data objects may have multiple parents.  The 
sequenceID is truly metadata, helping to express the structure of the data rather than its 
content. 

Note that reference elements have the same semantics as concrete data elements; thus they 
follow the same rules for sequential order.  By using reference elements, an entity may have one 
order within one structure and another order within another structure. 

Within NIEM-conformant instances, the order of objects is found to be given by sorting the 
objects by numerical value of their respective attribute structures:sequenceID, from 
smallest to highest.  The relative order of objects with equal values for 
structures:sequenceID is their order within the XML instance.  Objects with no value for 
structures:sequenceID occur after all objects that have values for 

structures:sequenceID, in their relative order within the XML instance. 

The use of instance-based sequencing, including the use of structures:sequenceID, is 
preferred over efforts to sequence data definitions.  For example, the use of "address line 1," 
"address line 2," "address line 3," etc., is not recommended.  Instead, a single "address line" 
would be preferred, with order expressed in the XML instance. 

8.5 Instance Metadata 

NIEM provides the metadata mechanism for giving information about object assertions.  An 
object may have an attribute that refers to one or more metadata objects.  A 
structures:metadata attribute indicates that a data item has the given metadata.  A 

structures:linkMetadata attribute asserts that the link (or relationship) established by 
an element has the given metadata. 
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Figure 8-3:  Example of metadata used in an instance 

<nc:Person> 

  <nc:PersonName s:metadata="m1 m2" s:linkMetadata="m3"> 

    <nc:PersonFullName>John Doe</nc:PersonFullName> 

  </nc:PersonName> 

  <nc:PersonBirthDate s:metadata="m2"> 

    <nc:Date>1945-12-01</nc:Date> 

  </nc:PersonBirthDate> 

</nc:Person> 

<nc:Metadata structures:id="m1"> 

  <nc:SourceText>Adam Barber</nc:SourceText> 

</nc:Metadata> 

<nc:Metadata structures:id="m2"> 

  <nc:ReportedDate> 

    <nc:Date>2005-04-26</nc:Date> 

  </nc:ReportedDate> 

</nc:Metadata> 

<nc:Metadata structures:id="m3"> 

  <nc:ProbabilityNumeric>0.25</nc:ProbabilityNumeric> 

</nc:Metadata> 

This example shows a person named John Doe, born 12/1/1945.  This data has several pieces of 
metadata on it: 

• Metadata m1 asserts Adam Barber gave the name. 

• Metadata m2 asserts the name and the birth date were reported on 4/26/2005. 

• Link metadata m3 asserts a 25% probability that the name goes with the person. 

This shows several characteristics of metadata: 

• Metadata objects may appear outside the data they describe. 

• Metadata objects may be reused. 

• Data may refer to more than one metadata object. 

• Metadata pertains to an object or simple content, while link metadata pertains to the 
relationship between objects.  

An instance would not be valid XML if the structures:metadata or 
structures:linkMetadata attributes contained references for which there were no 
defined IDs.  The instance would not be NIEM-conformant if the references were not to IDs 
defined with the structures:id attribute.   

The definition of a metadata type may contain an appinfo:AppliesTo element, which 
indicates the type to which the metadata applies.  For example: 



NIEM  NIEM Naming and Design Rules 

  88 

Figure 8-4:  A metadata type that describes applicability 
using structures:AppliesTo 

<xsd:complexType name="MeasureMetadataType"> 

  <xsd:annotation> 

    ... 

    <xsd:appinfo> 

      ... 

      <i:AppliesTo i:name="MeasureType"/> 

    </xsd:appinfo> 

  </xsd:annotation> 

  <xsd:complexContent> 

    ... 

  </xsd:complexContent> 

</xsd:complexType> 

Application of metadata to a type to which it is not applicable is not NIEM-conformant.  A 
metadata type may contain multiple structures:AppliesTo elements, in which case it 
may apply to an instance of any of the listed types.  If a metadata type contains no 
structures:AppliesTo elements, then it may apply to any type.  This is the case for 

nc:MetadataType in NIEM 2.0. 

[Rule 8-8] (INS) 

 Within an element instance, when an object O links to a metadata object via an attribute 
structures:metadata, the information in the metadata object SHALL be applied 
to the object O. 

[Rule 8-9] (INS) 

 Within an element instance, when an object O1 contains an element E, with content 
object O2 or with a reference to object O2, and O2 links to a metadata object via an 
attribute structures:linkMetadata, the information in the metadata object 
SHALL be applied to the relationship E between O1 and O2. 

Rationale 

 These two rules define the meaning of metadata:  

• structures:metadata applies metadata to an object. 

• structures:linkMetadata applies metadata to a relationship between two 
objects. 

[Rule 8-10] (INS) 

 Given that each IDREF in the value of an attribute structures:metadata  must 
match the value of an ID attribute on some element in the XML document, that ID 
attribute MUST be an occurrence of the attribute structures:id. 

[Rule 8-11] (INS) 

 Each element that an attribute structures:metadata references MUST have a 
type definition that is derived from structures:MetadataType. 
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[Rule 8-12] (INS) 

 Given that each IDREF in the value of an attribute structures:linkMetadata  
must match the value of an ID attribute on some element in the XML document, that ID 
attribute MUST be an occurrence of the attribute structures:id. 

[Rule 8-13] (INS) 

 Each element that an attribute structures:linkMetadata references MUST have 
a type definition that is derived from structures:MetadataType. 

Rationale  

 All structures:metadata and structures:linkMetadata attributes must 
refer to metadata objects, and the reference to that object must be established using 
the structures:id attribute, to facilitate processing of XML documents. 

[Rule 8-14] (INS) 

 Given that an element information item E has a type definition of some type T, each 
metadata type that is the type definition of an element information item referenced by 
an attribute structures:metadata or structures:linkMetadata on 
element E MUST be applicable to T. 

Rationale 

 The applicability is determined by structures:AppliesTo application information 
of the metadata type definition.  The instances must correspond to the types specified 
by the metadata type definition. 

9 Naming Rules 

This section outlines the rules used to create names for NIEM data components previously 
discussed in this document.  Data component names must be understood easily both by 
humans and by machine processes.  These rules improve name consistency by restricting 
characters, terms, and syntax that could otherwise allow too much variety and potential 
ambiguity.  These rules also improve readability of names for humans, facilitate parsing of 
individual terms that compose names, and support various automated tasks associated with 
dictionary and controlled vocabulary maintenance. 

9.1 Extension of XSD Namespace Simple Types 

[Rule 9-1] (REF, SUB, EXT) 

 Within the schema, a complex type that is a direct extension of a simple type from the 
XML Schema namespace simple type MAY use the same local name as the simple type if 
and only if the extension adds no content other than the attribute group 
structures:SimpleObjectAttributeGroup. 
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Rationale 

 It is useful to build complex type bases for further extension.  The NIEM distribution 
proxy schema xsd.xsd provides complex type bases for some of the simple types in 
the XML Schema namespace.  However, the complex types in this proxy schema reuse 
the local names of the simple types they extend, even though the simple type names 
may not be NIEM-conformant.  Requiring name changes for those NIEM-provided 
complex type bases would work against user understanding, for those already familiar 
with the names of the XML Schema namespace simple types being extended. 

9.2 Usage of English 

[Rule 9-2] (REF, SUB, EXT) 

 The name of any XML Schema component defined by the schema SHALL be composed of 
words from the English language, using the prevalent U.S. spelling, as provided by [OED]. 

Rationale 

 The English language has many spelling variations for the same word. For example, 
American English “program” has a corresponding British spelling “programme.” This 
variation has the potential to cause interoperability problems when XML components 
are exchanged because of the different names used by the same elements. Providing 
users with a dictionary standard for spelling will mitigate this potential interoperability 
issue.  

9.3 Characters in Names 

[Rule 9-3] (REF, SUB, EXT) 

 The name of any XML Schema component defined by the schema SHALL contain only 
the following characters:  

• Upper-case letters ('A'-'Z'). 

• Lower-case letters ('a'-'z'). 

• Digits ('0'-'9'). 

• Hyphen ('-').   

 Other characters, such as the underscore ('_') character and the period ('.') character 
SHALL NOT appear in component names in NIEM-conformant schemas. 

[Rule 9-4] (REF, SUB, EXT) 

 The hyphen character ('-') MAY appear in component names only when used as a 
separator between parts of a single word, phrase, or value, which would otherwise be 
incomprehensible without the use of a separator. 
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Rationale 

 Names of standards and specifications, in particular, tend to consist of series of discrete 
numbers.  Such names require some explicit separator to keep the values from running 
together.  The separator used within NIEM is the hyphen. 

Names of NIEM components follow the rules of XML Schema, by [Rule 5-3]. NIEM components 
also must follow the rules specified for each type of XML Schema component. 

9.4 Character Case 

[Rule 9-5] (REF, SUB, EXT) 

 Within the schema, any attribute declaration SHALL have a name that begins with a 
lower-case letter ('a'-'z'). 

[Rule 9-6] (REF, SUB, EXT) 

 Within the schema, any XML Schema component other than an attribute declaration 
SHALL have a name that begins with an upper-case letter ('A'-'Z'). 

Camel case  is the practice of writing compound words or phrases in which the words are joined 
without spaces and are capitalized within the compound words. [Wikipedia] 

[Rule 9-7] (REF, SUB, EXT) 

 The name of any XML Schema component defined by the schema SHALL use the camel 
case formatting convention. 

Rationale 

 The foregoing rules establish lowerCamelCase for all NIEM components that are XML 
attributes and UpperCamelCase for all NIEM components that are types, elements, or 
groups. 

9.5 Use of Acronyms and Abbreviations 

Acronyms and abbreviations have the ability to improve readability and comprehensibility of 
large, complex, or frequently used terms.  They also obscure meaning and impair understanding 
when their definitions are not clear or when they are used injudiciously.  They should be used 
with great care.  Acronyms and abbreviations that are used must be documented and used 
consistently. 

[Rule 9-8] (REF, SUB, EXT) 

 The schema MUST consistently use approved acronyms, abbreviations, and word 
truncations within defined names.  The approved shortened forms are defined in Table 
9-1:  Abbreviations Used in NIEM Core Names . 
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Table 9-1:  Abbreviations Used in NIEM Core Names  

Abbreviation Full Meaning 

ANSI American National Standards Institute 

CMV Commercial Motor Vehicle 

DEA Drug Enforcement Agency 

DNA Deoxyribonucleic Acid 

FGI Foreign Government Information 

FIPS Federal Information Processing Standard 

IC Intelligence Community 

ID Identifier 

IP Internet Protocol 

ISO International Standards Organization 

LIS NCIC code list for license state 

LSTA NCIC code list for state/country index 

MCO Manufacturer's Certificate of Origin 

MGRS Military Grid Reference System 

MSRP Manufacturer's Suggested Retail Price 

NANP North American Numbering Plan 

NCIC National Crime Information Center 

NCTC National Counter Terrorist Center 

NIBRS National Incident Based Reporting System 
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NLETS The International Justice & Public Safety 

Information Sharing Network (formerly 

known as the National Law Enforcement 

Teletype System) 

ORI Organization Identifier (Orion) 

RES NCIC code list for registration state for boat 

registrations 

RF Radio Frequency 

SIM Subscriber Identity Module 

SSN Social security number 

TYP NCIC code list for gun type 

TYPO NCIC code list for ORI type 

URI Uniform Resource Identifier 

US United States 

UTM Universal Transverse Mercator 

VIN Vehicle Identification Number 

VINA Vehicle Identification Number Analysis 

Rationale 

 Consistent, controlled, and documented abridged terms that are used frequently and/or 
tend to be lengthy can support readability, clarity, and reduction of name length.  

9.6 Word Forms 

[Rule 9-9] (REF, SUB, EXT) 

 A noun used as a term in the name of an XML Schema component MUST be in singular 
form unless the concept itself is plural.  
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[Rule 9-10] (REF, SUB, EXT) 

 A verb used as a term in the name of an XML Schema component MUST be used in the 
present tense unless the concept itself is past tense. 

[Rule 9-11] (REF, SUB, EXT) 

 Articles, conjunctions, and prepositions SHALL NOT be used in NIEM component names 
except where they are required for clarity or by standard convention. 

Rationale 

 Articles (e.g., a, an, the), conjunctions (e.g., and, or, but), and prepositions (e.g., at, by, 
for, from, in, of, to) are all disallowed in NIEM component names, unless they are 
required.  For example, PowerOfAttorneyCode requires the preposition.  These 
rules constrain slight variations in word forms and types to improve consistency and 
reduce potentially ambiguous or confusing component names.  

9.7 Name Generation 

Elements in NIEM-conformant schemas are given names that follow a specific pattern.  This 
pattern comes from [ISO 11179 Part 5]. 

[Rule 9-12] (REF, SUB, EXT) 

 Except as specified elsewhere in this document, any element or attribute defined within 
the schema SHALL have a name that takes the form: 

• Object-class qualifier terms (0 or more). 

• An object class term (1). 

• Property qualifier terms (0 or more). 

• A property term (1). 

• Representation qualifier terms (0 or more). 

• A representation term (1). 

Rationale 

 Consistent naming rules are helpful for users who wish to understand components with 
which they are unfamiliar, as well as for users to find components with known 
semantics.  This rule establishes the basic structure for an element or attribute name, in 
line with the rules for names under [ISO 11179 Part 5].  Note that many elements with 
complex type should not have a representation term. 

9.8 Object-Class Term 

The NIEM adopts an object-oriented approach to representation of data.  Object classes 
represent what [ISO 11179 Part 5] refers to as “things of interest in a universe of discourse that 
may be found in a model of that universe.”  An object class or object term is a word that 
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represents a class of real-world entities or concepts. An object-class term describes the 
applicable context for a NIEM component.   

[Rule 9-13] (REF, SUB, EXT) 

 The object-class term of a NIEM component SHALL consist of a term identifying a 
category of concrete concepts or entities. 

Rationale 

 The object-class term indicates the object category that this data component describes 
or represents.  This term provides valuable context and narrows the scope of the 
component to an actual class of things or concepts.   

Example 

 Concept term: Activity 

 Entity term: Vehicle 

9.9 Property Term 

Objects or concepts are usually described in terms of their characteristic properties, data 
attributes, or constituent subparts.  Most objects can be described by several characteristics.  
Therefore, a property term in the name of a data component represents a characteristic or 
subpart  of an object class and generally describes the essence of that data component.  

[Rule 9-14] (REF, SUB, EXT) 

 A property term SHALL describe or represent a characteristic or subpart of an entity or 
concept.  

Rationale 

 The property term describes the central meaning of the data component.   

9.10 Qualifier Terms  

Qualifier terms modify object, property, representation, or other qualifier terms to increase 
semantic precision and reduce ambiguity.  Qualifier terms may precede or succeed the terms 
they modify.  The goal for the placement of qualifier terms is to generally follow the rules of 
ordinary English while maintaining clarity.  

[Rule 9-15] (REF, SUB, EXT) 

 Multiple qualifier terms MAY be used within a component name as necessary to ensure 
clarity and uniqueness within its namespace and usage context. 

[Rule 9-16] (REF, SUB, EXT) 

 The number of qualifier terms SHOULD be limited to the absolute minimum required to 
make the component name unique and understandable.  
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[Rule 9-17] (REF, SUB, EXT) 

 The order of qualifiers SHALL NOT be used to differentiate names. 

Rationale 

 Very large vocabularies may have many similar and closely related properties and 
concepts.  The use of object, property, and representation terms alone is often not 
sufficient to construct meaningful names that can uniquely distinguish such 
components.  Qualifier terms provide additional context to resolve these subtleties.  
However, swapping the order of qualifiers rarely (if ever) changes meaning; qualifier 
ordering is no substitute for meaningful terms.  

9.11 Representation Term 

 The representation term for a component name serves several purposes in NIEM:   

1. It can indicate the style of component.  For example, types are clearly labeled with the 
representation term Type. 

2. It helps prevent name conflicts and confusion.  For example, elements and types may 
not be given the same name.   

3. It indicates the nature of the value carried by element.  Labeling elements and attributes 
with a notional indicator of the content eases discovery and comprehension. 

[Rule 9-18] (REF, EXT) 

 If any word in the representation term is redundant with any word in the property term, 
one occurrence SHOULD be deleted. 

Rationale 

 This rule, carried over from 11179, is designed to prevent repeating terms unnecessarily 
within component names.  For example, this rule allows designers to avoid naming an 
element "PersonFirstNameName." 

The valid value set of a data element or value domain is described by the representation term.  
NIEM uses a standard set of representation terms in the representation portion of a NIEM-
conformant component name.  Table 9-2:  Representation Terms lists the primary 
representation terms and a definition for the concept associated with the use of that term.  The 
table also lists secondary representation terms that may represent more specific uses of the 
concept associated with the primary representation term.  
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Table 9-2:  Representation Terms 

Primary 

Representation Term 

Secondary 

Representation Term 

Definition 

Amount - A number of monetary units 

specified in a currency where 

the unit of currency is explicit 

or implied. 

BinaryObject - A set of finite-length 

sequences of binary octets. 

 Graphic A diagram, graph, 

mathematical curves, or 

similar representation 

 Picture A visual representation of a 

person, object, or scene 

 Sound A representation for audio 

 Video A motion picture 

representation; may include 

audio encoded within 

Code  A character string (i.e., letters, 

figures,  and symbols) that for 

brevity, language 

independence, or precision 

represents a definitive value 

of an attribute. 

DateTime  A particular point in the 

progression of time together 

with relevant supplementary 

information. 

 Date A particular day, month, and 

year in the Gregorian 

calendar. 
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Time A particular point in the 

progression of time within an 

unspecified 24-hour day. 

ID 

 

 

 

 

 

 

 A character string to identify 

and distinguish uniquely one 

instance of an object in an 

identification scheme from all 

other objects in the same 

scheme together with relevant 

supplementary information. 

 URI A string of characters used to 

identify (or name) a resource. 

The main purpose of this 

identifier is to enable 

interaction with 

representations of the 

resource over a network, 

typically the World Wide 

Web, using specific protocols.  

A URI is either a Uniform 

Resource Locator (URL) or a 

Uniform Resource Name 

(URN).  The specific syntax 

for each is defined by 

[RFC3986]. 

Indicator  A list of two mutually 

exclusive Boolean values that 

express the only possible 

states of a property. 

Measure  A numeric value determined 

by measuring an object along 

with the specified unit of 

measure. 
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Numeric  Numeric information that is 

assigned or is determined by 

calculation, counting, or 

sequencing. It does not 

require a unit of quantity or 

unit of measure. 

 Value A result of a calculation. 

 Rate A representation of a ratio 

where the two units are not 

included. 

 Percent A representation of a ratio in 

which the two units are the 

same.  

Quantity  A counted number of  

nonmonetary units possibly 

including fractions. 

Text - A character string (i.e., a 

finite sequence of characters) 

generally in the form of words 

of a language. 

 Name A word or phrase that 

constitutes the distinctive 

designation of a person, place, 

thing, or concept.  

[Rule 9-19] (REF, SUB, EXT) 

 Within the schema, the name of an element declaration that is of simple content MUST 
use a representation term found in Table 9-2:  Representation Terms. 

[Rule 9-20] (REF, SUB, EXT) 

 Within the schema, the name of an element declaration that is of complex content, and 
that corresponds to a concept listed in Table 9-2:  Representation Terms, MUST use a 
representation term from that table. 
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[Rule 9-21] (REF, SUB, EXT) 

 Within the schema, the name of an element declaration that is of complex content and 
that does not correspond to a concept listed in Table 9-2:  Representation Terms MUST 
NOT use a representation term. 

[Rule 9-22] (REF, SUB, EXT) 

 Within the schema, the name of an attribute declaration MUST use a representation 
term from Table 9-2:  Representation Terms. 

Rationale 

 An element that represents a value listed in the table should have a representation term. 
It should do so even if its type is complex with multiple parts.  For example, a type with 
multiple fields may represent a sound binary, a date, or a name. 

9.12 NIEM Type Names 

This section contains naming rules specific to various kinds of NIEM types.  

9.12.1 All Type Components 

[Rule 9-23] (REF, SUB, EXT) 

 Within the schema, the name of any type definition MUST use the representation term 
Type. 

Rationale 

 Using the representation term Type immediately identifies XML types in a NIEM-
conformant schema and prevents naming collisions with corresponding XML elements 
and attributes. 

9.12.2 Simple Type Components 

[Rule 9-24] (REF, SUB, EXT) 

 Within the schema, the name of any simple type definition SHALL use the 
representation term qualifier Simple.  This qualifier SHALL appear after any other 
representation term qualifiers. 

Rationale 

 Specific uses of type definitions have similar syntax but very different effects on data 
definitions.  Schemas that clearly identify complex and simple type definitions are easier 
to understand without tool support.  This rule ensures that names of simple types end in 
SimpleType. 
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9.12.3 Code Type Components 

[Definition: code type] 

 A code type is a simple type schema component definition that contains multiple 
xsd:enumeration facets.  

These types represent lists of values, each of which has a known meaning beyond the text 
representation.  These values may be meaningful text or may be a string of alphanumeric 
identifiers that represent abbreviations for literals. 

[Rule 9-25] (REF, SUB, EXT) 

 Within the schema, the name of any code type SHALL use the representation term 
qualifier Code. 

Rationale 

 Using the qualifier Code (e.g. CodeType, CodeSimpleType) immediately 
identifies a type as representing a fixed list of codes.  These types may be handled in 
specific ways, as lists of codes are expected to have their own lifecycles, including 
versions and periodic updates.  Codes may also have responsible authorities behind 
them who provide concrete semantic bindings for the code values. 

[Rule 9-26] (REF, SUB, EXT) 

 Within the schema, any type definition which has a base type definition of a code type 
or which is transitively based on a code type SHALL have a name that uses the 

representation term qualifier Code. 

Rationale 

 This expands the use of the representation term qualifier Code to any type based on a 
code list.  

9.12.4 Association Type Components 

[Rule 9-27] (REF, SUB, EXT) 

 Within the schema, any association type SHALL have a name that uses the 
representation term qualifier Association.  Types other than association types 

SHALL NOT use the representation term qualifier Association. 

Rationale 

 Using the qualifier Association immediately identifies a type as representing an 
association. 
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9.12.5 Augmentation Type Components 

[Rule 9-28] (REF, SUB, EXT) 

 Within the schema, any augmentation type SHALL have a name that uses the 
representation term qualifier Augmentation.  Types other than augmentation types 

SHALL NOT use the representation term qualifier Augmentation. 

Rationale 

 Using the qualifier Augmentation immediately identifies a type as representing an 
augmentation. 

9.12.6 Metadata Type Components 

[Rule 9-29] (REF, SUB, EXT) 

 Within the schema, any metadata type SHALL have a name that uses the representation 
term qualifier Metadata.  Types other than metadata types SHALL NOT use the 

representation term qualifier Metadata. 

Rationale 

 Using the qualifier Metadata immediately identifies a type as representing metadata. 

9.13 NIEM Property Names 

This section contains naming rules specific to different kinds of NIEM properties. 

9.13.1 Attribute Group Names 

[Rule 9-30] (REF, SUB, EXT) 

 Within the schema, the name of any attribute group definition schema component 
SHALL use the representation term AttributeGroup. 

Rationale 

 This clearly identifies attribute groups and partitions their names from the names of 
other types of schema components. 

9.13.2 Reference Names 

[Rule 9-31] (REF, SUB, EXT) 

 Within the schema, the name of any reference element SHALL use the representation 
term suffix Reference. 

Rationale 

 Reference elements are identical in semantics to elements that are not by reference.  
However, they refer to their values by a reference attribute instead of carrying it as 
content of the XML element.  The use of a suffix helps indicate that the elements refer 
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to, instead of contain, their values, yet allows the basic semantics (e.g., property, 
representation term) to persist.   

 Note that the use of the representation term suffix is one of the situations in which 
there is a slight divergence from the general rule for name generation as discussed in 
[Rule 9-12]. 

9.13.3 Association Names 

[Rule 9-32] (REF, SUB, EXT) 

 Within the schema, the name of an association element SHALL use the representation 
term qualifier Association. 

Rationale 

 Using the qualifier Association  immediately identifies an element as representing 
an association. 

9.13.4 Augmentation Names 

[Rule 9-33] (REF, SUB, EXT) 

 Within the schema, the name of an augmentation element SHALL use the 
representation term Augmentation. 

Rationale 

 Using the qualifier Augmentation immediately identifies an element as representing 
an augmentation. 

9.13.5 Metadata Names 

[Rule 9-34] (REF, SUB, EXT) 

 Within the schema, the name of a metadata element SHALL use the representation term 
Metadata. 

Rationale 

 Using the qualifier Metadata immediately identifies an element as representing 
metadata. 

9.13.6 Role Names 

[Rule 9-35] (REF, SUB, EXT) 

 Within the schema, the name of a role SHALL use the property term RoleOf. 

Rationale 

 Using the property term RoleOf  immediately identifies an element as representing a 
role.
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Appendix A: NIEM Overview 

NIEM is a reference model of unconstrained components rendered in XML Schema.  Associated 
with the NIEM-conformant schemas is an XML reference architecture that organizes and guides 
the employment of the various kinds of schemas that compose a NIEM information exchange.  
The XML reference architecture describes the relationships between XML Schema documents 
for NIEM Information Exchange Package Documentation (IEPD). 

Figure A-1:  The NIEM XML Reference Architecture 

 

An Exchange Package is defined by the Federal Enterprise Architecture (FEA) Data Reference 
Model [DRM] as a description of a specific recurring data exchange between a supplier and a 
consumer.  A NIEM IEPD is a set of artifacts that implements an FEA DRM Exchange Package.  
The NIEM IEPD Specification [IEPD] contains a more detailed explanation of IEPDs and their 
contents. 

The following kinds of schemas are associated with the NIEM reference architecture: 

• NIEM reference schemas:  Schemas containing content created or approved by the NIEM 
steering committees are periodically released in schema distributions.  The structure and 
content of such distributions are not specified in this document.  This document 
specifies rules that apply to the NIEM-conformant schemas that are released as part of 
such distributions. 

• NIEM support schemas:  NIEM includes two special schemas, the appinfo and the 

structures schemas, for annotating and structuring NIEM-conformant schemas. 
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• Extension Schema:  a NIEM-conformant schema that adds domain- or application-
specific content to the base NIEM model. 

• Exchange Schema:  a NIEM-conformant schema that specifies a document in a  
particular exchange. 

• Subset Schema:  a profile of a NIEM-conformant schema, derived from a reference 
schema, but which specifies instances that require only a portion of the reference 
schema. 

• Constraint Schema:  a schema which adds additional constraints to NIEM-conformant 
instances, but which is assumed to validate in concert with existing NIEM-conformant or 
subset schemas.  A constraint schema need not validate constraints that are applied by 
other schemas. 

The only mandatory schemas for validation are the NIEM reference schemas or correct subsets.  
NIEM schemas may import additional schemas, such as code table schemas, as needed.  The 
optional exchange schema imports, reuses, and organizes the components from the NIEM for 
the particular exchange.  An optional extension schema may be used to add extended types and 
properties for components not contained in NIEM but which are needed for the exchange. 

Note that only the reference schemas, or subsets thereof, are required for validation of a NIEM-
conformant instance.  The IEPD specification requires that an IEPD include  an exchange schema 
along with the reference schemas (or subsets) to be considered a complete IEPD.   

The exchange and extension schemas can be combined into a single schema and namespace or 
can be broken out into separate schemas and corresponding namespaces.  The user may decide 
the best way to organize components.  If the extension components will be reused elsewhere, it 
may be more efficient to maintain them in a separate namespace, rather than including them in 
a document namespace. 

The NIEM reference schemas are overinclusive and underconstrained.  The reason for this 
approach is that predetermining all user needs and constraints is rarely possible. The only way 
to reach consensus on components is to include all obvious requirements and maintain 
relatively relaxed constraints.   

To ensure interoperability, specific component requirements and constraints are determined on 
a per-exchange basis (in IEPDs).  By creating a subset of NIEM Core, reference, and code table 
schemas, the user can limit the components to only those he or she needs.  In the future, a 
business component layer between IEPDs and NIEM will allow domains to apply consistent 
requirements and constraints for their exchanges. 

The basic principle for a subset is that an instance that validates against a correct subset schema 
will always validate against the full reference NIEM-conformant schema set.  The user may also 
adjust cardinality constraints, as desired, within the subset schemas.   

Additional constraints may be handled in a constraint schema.  A constraint schema is derived 
from a subset schema.  However, it may contain other constraints (for example, additional types 
for specific constraints).  The constraint schema provides an alternative constraint validation 
path that allows the user to reduce the possible set of allowable XML instances, independent of 
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the reference schema or subset conformance validation path.  This is done through multipass 
validation.  A correctly constructed XML instance will validate through both the conformance 
and the constraint path. 
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Appendix B: Name Syntax for Special Components 

The following table summarizes NIEM general naming syntax for special components and their 
associated types.  Refer to Sections 9.12 and 9.13 for the specific rules associated with this 
table.  

Note that this table does not mention the general syntax for standard types and properties 
introduced in Sections 9.12 and 9.13.   

Table B-1:  Name Syntax for Special Components 

Name Syntax * Notes 

Association  

[Property]Association Preferred: [Property] describes relationship 

[Object1][Object2]Association Alternate 1: related objects 

[Object]Association Alternate 2: related objects are same class 

Role Reference  

RoleOf[Object]Reference Element in the role that references base type 

Type Augmentation  

[Object][Property]Augmentation [Object][Property] is from type augmented 

Metadata  

[Property]Metadata  

Adapter  

[Object][Property]Adapter  

Abstract  

[Object][Property] Preferred 
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Name Syntax * Notes 

[Object][Property]Abstract Alternate: when required to prevent name 

clash 

* Object and Property refer to [ISO 11179 Part 5] terms in a component name. 
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Appendix C: Supporting Schemas 

NIEM provides a set of schemas that underlie the data model schemas.  These schemas do not 
define data model content; they do not define people, vehicles, or relationships between them.  
Instead, these schemas define the fundamental framework on which the data model is built.   

There are two supporting schemas.  The first, called appinfo, is the namespace for application 

information that supports data model definitions.  The second is called structures and is 
the namespace for basic types that augment the mechanisms of XML Schema for more 
sophisticated data modeling and information exchanges. 

This appendix defines and discusses each of the framework components in the two supporting 
schemas.  At the conclusion of the discussion of each schema, the full schema is provided as a 
reference.  

This appendix also includes a directory listing of all the reference schemas that are part of NIEM 
2.0. 

The appinfo namespace 

The appinfo schema provides support for high-level data model concepts and additional 
syntax to support the NIEM conceptual model and validation of NIEM-conformant instances.  
This schema is available at [NIEMAppinfoXSD]. 

Figure C-1:  Schema document element 

<xsd:schema  

  xmlns:xsd=”http://www.w3.org/2001/XMLSchema” 

  xmlns:i=”http://niem.gov/niem/appinfo/2.0” 

  xmlns:s=”http://niem.gov/niem/structures/2.0” 

  targetNamespace=”http://niem.gov/niem/appinfo/2.0” 

  attributeFormDefault="qualified" version="1"> 

Discussion 

 The namespace for the appinfo namespace is 
http://niem.gov/niem/appinfo/2.0. 

Figure C-2:  Element appinfo:Resource 

  <xsd:element name="Resource"> 

    <xsd:complexType> 

      <xsd:attribute name="name" type="xsd:NCName" use="required"/> 

    </xsd:complexType> 

  </xsd:element> 

Discussion 

 The Resource element provides a method for application information to define a 
name within a schema, without the name being bound to a schema component.  This is 

http://www.w3.org/2001/XMLSchema
http://niem.gov/niem/appinfo/2.0
http://niem.gov/niem/structures/2.0
http://niem.gov/niem/appinfo/2.0
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used by the structures schema to define names for structures:Object and 
structures:Association. 

Figure C-3:  Element appinfo:Deprecated 

  <xsd:element name="Deprecated"> 

    <xsd:complexType> 

      <xsd:attribute name="value" use="required"> 

        <xsd:simpleType> 

          <xsd:restriction base="xsd:boolean"> 

            <xsd:pattern value="true"/> 

          </xsd:restriction> 

        </xsd:simpleType> 

      </xsd:attribute> 

      </xsd:complexType> 

  </xsd:element> 

Discussion 

 The Deprecated element provides a method for identifying components as being 
deprecated.  A deprecated component is one which is provided but whose use is not 
recommended. 

Figure C-4:  Element appinfo:Base 

  <xsd:element name="Base"> 

    <xsd:complexType> 

        <xsd:attribute name="name" type="xsd:NCName" use="required"/> 

        <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 

    </xsd:complexType> 

  </xsd:element> 

Discussion 

 The Base element provides a mechanism for indicating base types and base elements in 
schema for the cases in which XML Schema mechanisms are insufficient.  For example, it 
is used to indicate Object or Association bases. 

Figure C-5:  Element appinfo:ReferenceTarget 

  <xsd:element name="ReferenceTarget"> 

    <xsd:complexType> 

      <xsd:attribute name="name" type="xsd:NCName" use="required"/> 

      <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 

    </xsd:complexType> 

  </xsd:element> 

Discussion 

 The ReferenceTarget element indicates a NIEM type which may be a target (that is, 
a destination) of a NIEM reference element.  It may be used in combinations to indicate 
a set of valid types. 
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Figure C-6:  Element appinfo:AppliesTo 

  <xsd:element name="AppliesTo"> 

    <xsd:complexType> 

      <xsd:attribute name="name" type="xsd:NCName" use="required"/> 

      <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 

    </xsd:complexType> 

  </xsd:element> 

Discussion 

 The AppliesTo element is used in two ways.  First, it indicates the set of types to 
which a metadata type may be applied.  Second, it indicates the set of types to which an 
augmentation element may be applied. 

Figure C-7:  Element appinfo:ConformantIndicator 

  <xsd:element name="ConformantIndicator" type="boolean"/> 

Discussion 

 The ConformantIndicator element may be used in two ways.  First, it is included 
as application information for a schema document element to indicate that the schema 
is NIEM-conformant.  Second, it is used as application information of a namespace 
import to indicate that the schema is not NIEM-conformant. 

Figure C-8:  Element 
appinfo:ExternalAdapterTypeIndicator 

  <xsd:element name="ExternalAdapterTypeIndicator" type="boolean"/> 

Discussion 

 The ExternalAdapterTypeIndicator element indicates that a complex type is 
an external adapter type.  Such a type is one composed of elements and attributes from 
non-NIEM-conformant schemas.  The indicator allows schema processors to switch to 
alternative processing modes when processing NIEM-conformant versus non-NIEM-
conformant content. 
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Figure C-9:  Full XML Schema for Appinfo Namespace 

<?xml version="1.0" encoding="UTF-8"?> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:i="http://niem.gov/niem/appinfo/2.0" xmlns:s="http://niem.gov/niem/structures/2.0" 

targetNamespace="http://niem.gov/niem/appinfo/2.0" attributeFormDefault="qualified" 

version="1"> 

  <xsd:element name="Resource"> 

    <xsd:complexType> 

      <xsd:attribute name="name" type="xsd:NCName" use="required"/> 

    </xsd:complexType> 

  </xsd:element> 

  <xsd:element name="Deprecated"> 

    <xsd:complexType> 

      <xsd:attribute name="value" use="required"> 

        <xsd:simpleType> 

          <xsd:restriction base="xsd:boolean"> 

            <xsd:pattern value="true"/> 

          </xsd:restriction> 

        </xsd:simpleType> 

      </xsd:attribute> 

      </xsd:complexType> 

  </xsd:element> 

  <xsd:element name="Base"> 

    <xsd:complexType> 

        <xsd:attribute name="name" type="xsd:NCName" use="required"/> 

        <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 

    </xsd:complexType> 

  </xsd:element> 

  <xsd:element name="ReferenceTarget"> 

    <xsd:complexType> 

      <xsd:attribute name="name" type="xsd:NCName" use="required"/> 

      <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 

    </xsd:complexType> 

  </xsd:element> 

  <xsd:element name="AppliesTo"> 

    <xsd:complexType> 

      <xsd:attribute name="name" type="xsd:NCName" use="required"/> 

      <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 

    </xsd:complexType> 

  </xsd:element> 

  <xsd:element name="ConformantIndicator" type="xsd:boolean"/> 

  <xsd:element name="ExternalAdapterTypeIndicator" type="xsd:boolean"/>  

 

</xsd:schema> 
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The structures schema 

The structures schema provides support for fundamental NIEM linking mechanisms, as well 
as providing base types for definition of NIEM-conformant types.  This schema is available at 
[NIEMStructuresXSD]. 

Figure C-10:  Schema document element 

<?xml version="1.0" encoding="UTF-8"?> 

<xsd:schema 

    targetNamespace="http://niem.gov/niem/structures/2.0" 

    version="1" 

    xmlns:appinfo="http://niem.gov/niem/appinfo/2.0" 

    xmlns:s="http://niem.gov/niem/structures/2.0" 

    xmlns="http://www.w3.org/2001/XMLSchema"> 

Discussion 

 The target namespace for the structures schema is 
http://niem.gov/niem/structures/2.0. 

Figure C-11:  Import of appinfo 

  <xsd:import  

    schemaLocation="../../appinfo/2.0/appinfo.xsd" 

    namespace="http://niem.gov/niem/appinfo/2.0"/> 

Discussion 

 The structures schema uses components from the appinfo namespace. 

Figure C-12:  Resource structures:Object 

  <xsd:annotation> 

    <xsd:appinfo> 

      <i:Resource i:name="Object"/> 

    </xsd:appinfo> 

  </xsd:annotation> 

Discussion 

 The Object resource defines an identifier that acts as a conceptual base for objects in 
NIEM-conformant schemas. 

Figure C-13:  Resource structures:Association 

  <xsd:annotation> 

    <xsd:appinfo> 

      <i:Resource i:name="Association"/> 

    </xsd:appinfo> 

  </xsd:annotation>   
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Discussion 

 The Association resource defines an identifier that acts as a conceptual base for 
association in NIEM-conformant schemas. 

Figure C-14:  Attribute structures:id 

  <xsd:attribute name="id" type="ID"/> 

Discussion 

 The id attribute is used to define XML IDs for NIEM objects.  These IDs may be targets 
of reference elements, metadata attributes, and link metadata attributes. 

Figure C-15:  Attribute structures:linkMetadata 

  <xsd:attribute name="linkMetadata" type="IDREFS"/> 

Discussion 

 The linkMetadata attribute allows an element to point to metadata that affects the 
relationship between the context and the value of the object. 

Figure C-16:  Attribute structures:metadata 

  <xsd:attribute name="metadata" type="IDREFS"/> 

Discussion 

 The attribute metadata allows an object to point to metadata that affects itself. 

Figure C-17:  Attribute structures:ref 

  <xsd:attribute name="ref" type="IDREF"/> 

Discussion 

 The ref attribute is used by reference elements in NIEM to refer to an object via an ID 
reference, rather than including the object itself as element content. 

Figure C-18:  Attribute structures:sequenceID 

  <xsd:attribute name="sequenceID" type="integer"/> 
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Discussion 

 The sequenceID attribute allows a series of elements to define a sequence for 
content that does not correspond to the order of element declarations within a type.  
This attribute may override the sequence of elements appearing within an instance. 

Figure C-19:  Attribute group 
structures:SimpleObjectAttributeGroup 

  <xsd:attributeGroup name="SimpleObjectAttributeGroup"> 

      <xsd:attribute ref="s:id"/> 

      <xsd:attribute ref="s:metadata"/> 

      <xsd:attribute ref="s:linkMetadata"/> 

  </xsd:attributeGroup> 

Discussion 

 The SimpleObjectAttributeGroup attribute group provides a collection of 
attributes that are appropriate for definition of object types. 

Figure C-20:  Element structures:Augmentation 

  <xsd:element name="Augmentation" type="s:AugmentationType”  

    abstract="true"/> 

Discussion 

 The Augmentation element provides a substitution group head for augmentations.  
The designer of a message or object may use this element within an object definition.  
This will allow the selection of augmentations dynamically, at run time (or at least 
schema selection time) rather than at schema authoring time. 

Figure C-21:  Element structures:Metadata 

  <xsd:element name="Metadata" type="s:MetadataType" abstract="true"/> 

Discussion 

 The Metadata element provides a substitution group head for metadata.  Like the 
substitution group head for augmentations, this allows selection of metadata to be 
decided late in message creation, rather than at schema authoring time.  This element 
may also be used to provide a single point in a container where all metadata for a 
message may be deposited. 
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Figure C-22:  Complex type 
structures:AugmentationType 

  <xsd:complexType name="AugmentationType" abstract="true"> 

    <xsd:attribute ref="s:id"/> 

    <xsd:attribute ref="s:metadata"/> 

  </xsd:complexType>  

Discussion 

 The AugmentationType type is a base type for all augmentations.  An augmentation 
may have metadata and an ID but may not have link metadata, as it does not establish a 
relationship between its value and its context.  The individual element contents of an 
augmentation, however, do establish a relationship between the context of the 
augmentation and the values of the individual elements.  

Figure C-23:  Type structures:ComplexObjectType 

  <xsd:complexType name="ComplexObjectType" abstract="true"> 

    <xsd:attribute ref="s:id"/> 

    <xsd:attribute ref="s:metadata"/> 

    <xsd:attribute ref="s:linkMetadata"/> 

  </xsd:complexType>   

Discussion 

 The ComplexObjectType type provides a base class for object definition, association 
definitions, and external adapter type definitions.  An instance of one of these types may 
have an ID.  It may have metadata as it establishes the existence of an object (maybe a 
conceptual object).  It may also have link metadata, as an element of one of these types 
establishes a relationship between its value and its context. 

Figure C-24:  Type structures:MetadataType 

  <xsd:complexType name="MetadataType" abstract="true"> 

    <xsd:attribute ref="s:id"/> 

  </xsd:complexType> 

Discussion 

 The MetadataType type is a base class for metadata type definition.  This type 
provides only an ID, as the metadata may be referenced.  It does not itself have 
metadata and does not have link metadata. 
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Figure C-25:  Type structures:ReferenceType 

  <xsd:complexType name="ReferenceType" final="#all"> 

    <xsd:attribute ref="s:id"/> 

    <xsd:attribute ref="s:ref"/> 

    <xsd:attribute ref="s:linkMetadata"/> 

  </xsd:complexType> 

Discussion 

 The ReferenceType type is the type of all reference elements within NIEM-
conformant schemas.  This type provides a reference attribute to reference an object 
defined elsewhere.  It includes an ID, as the link established by a reference element may 
need to be identified, and link metadata, as an element of this type establishes a 
relationship between its context and the referenced object.  It does not contain 
metadata, as it does not itself establish the existence of an object; it relies on a 
definition located elsewhere. 
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Figure C-26:  Full XML Schema for Structures 
Namespace 

<?xml version="1.0" encoding="UTF-8"?> 

<xsd:schema  

  xmlns:xsd=”http://www.w3.org/2001/XMLSchema” 

  xmlns:i=”http://niem.gov/niem/appinfo/2.0” 

  xmlns:s=”http://niem.gov/niem/structures/2.0” 

  targetNamespace="http://niem.gov/niem/structures/2.0"  

  version="1"> 

 

  <xsd:import  

    schemaLocation="../../appinfo/2.0/appinfo.xsd" 

    namespace="http://niem.gov/niem/appinfo/2.0"/> 

   

  <xsd:annotation> 

    <xsd:appinfo> 

      <i:Resource i:name="Object"/> 

    </xsd:appinfo> 

  </xsd:annotation> 

  <xsd:annotation> 

    <xsd:appinfo> 

      <i:Resource i:name="Association"/> 

    </xsd:appinfo> 

  </xsd:annotation> 

 

  <xsd:attribute name="id" type="xsd:ID"/> 

  <xsd:attribute name="linkMetadata" type="xsd:IDREFS"/> 

  <xsd:attribute name="metadata" type="xsd:IDREFS"/> 

  <xsd:attribute name="ref" type="xsd:IDREF"/> 

  <xsd:attribute name="sequenceID" type="xsd:integer"/> 

  <xsd:attributeGroup name="SimpleObjectAttributeGroup"> 

    <xsd:attribute ref="s:id"/> 

    <xsd:attribute ref="s:metadata"/> 

    <xsd:attribute ref="s:linkMetadata"/> 

  </xsd:attributeGroup> 

  <xsd:element name="Augmentation" type="s:AugmentationType" 

    abstract="true"/> 

  <xsd:element name="Metadata" type="s:MetadataType" abstract="true"/> 

 

  <xsd:complexType name="AugmentationType" abstract="true"> 

    <xsd:attribute ref="s:id"/> 

    <xsd:attribute ref="s:metadata"/> 

  </xsd:complexType> 

  <xsd:complexType name="ComplexObjectType" abstract="true"> 

    <xsd:attribute ref="s:id"/> 

    <xsd:attribute ref="s:metadata"/> 

    <xsd:attribute ref="s:linkMetadata"/> 

  </xsd:complexType> 

  <xsd:complexType name="MetadataType" abstract="true"> 

    <xsd:attribute ref="s:id"/> 

  </xsd:complexType> 

  <xsd:complexType name="ReferenceType" final="#all"> 

    <xsd:attribute ref="s:id"/> 

    <xsd:attribute ref="s:ref"/> 

    <xsd:attribute ref="s:linkMetadata"/> 

  </xsd:complexType> 

 

</xsd:schema> 

http://www.w3.org/2001/XMLSchema
http://niem.gov/niem/appinfo/2.0
http://niem.gov/niem/structures/2.0
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NIEM 2.0 Reference Schemas – Directory Listing 
niem/ 

    ansi-nist/2.0/ansi-nist.xsd 

    ansi_d20/2.0/ansi_d20.xsd 

    apco/2.0/apco.xsd 

    appinfo/2.0/appinfo.xsd 

    atf/2.0/atf.xsd 

    census/2.0/census.xsd 

    dea/2.0/dea.xsd 

    dod_jcs-pub2.0-misc/2.0/dod_jcs-pub2.0-misc.xsd 

    domains/ 

        emergencyManagement/2.0/emergencyManagement.xsd 

        immigration/2.0/immigration.xsd 

        infrastructureProtection/2.0/infrastructureProtection.xsd 

        intelligence/2.0/intelligence.xsd 

        internationalTrade/2.0/internationalTrade.xsd 

        jxdm/4.0/jxdm.xsd 

        screening/2.0/screening.xsd 

    edxl/2.0/edxl.xsd 

    edxl-cap/2.0/edxl-cap.xsd 

    edxl-de/2.0/edxl-de.xsd 

    external/ 

        cap/1.1/cap.xsd 

        de/1.0/de.xsd 

        dhs-gmo/AS/mobileObject/1.0.0/mobileObject.xsd 

        dhs-gmo/AS/multiModalRoute/1.0.0/multiModalRoute.xsd 

        iai-ifc/rc2/dhs-gmo/1.0.0/IFC2X2_FINAL.xsd 

        iso-10303-step/2/dhs-gmo/1.0.0/configuration.xsd 

        iso-10303-step/2/dhs-gmo/1.0.0/ex.xsd 

        iso-19139-gmd/ 

            draft-0.1/gco/dhs-gmo/1.0.0/basicTypes.xsd 

            draft-0.1/gco/dhs-gmo/1.0.0/gco.xsd 

            draft-0.1/gco/dhs-gmo/1.0.0/gcoBase.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/applicationSchema.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/citation.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/constraints.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/content.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/dataQuality.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/distribution.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/extent.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/freeText.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/gmd.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/identification.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/maintenance.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/metadataApplication.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/metadataEntity.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/metadataExtension.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/portrayalCatalogue.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/referenceSystem.xsd 

            draft-0.1/gmd/dhs-gmo/1.0.0/spatialRepresentation.xsd 

            draft-0.1/gmx/dhs-gmo/1.0.0/catalogues.xsd 

            draft-0.1/gmx/dhs-gmo/1.0.0/codelistItem.xsd 

            draft-0.1/gmx/dhs-gmo/1.0.0/crsItem.xsd 

            draft-0.1/gmx/dhs-gmo/1.0.0/extendedTypes.xsd 

            draft-0.1/gmx/dhs-gmo/1.0.0/gmx.xsd 
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            draft-0.1/gmx/dhs-gmo/1.0.0/gmxUsage.xsd 

            draft-0.1/gmx/dhs-gmo/1.0.0/uomItem.xsd 

            draft-0.1/gsr/dhs-gmo/1.0.0/gsr.xsd 

            draft-0.1/gsr/dhs-gmo/1.0.0/spatialReferencing.xsd 

            draft-0.1/gss/dhs-gmo/1.0.0/geometry.xsd 

            draft-0.1/gss/dhs-gmo/1.0.0/gss.xsd 

            draft-0.1/gts/dhs-gmo/1.0.0/gts.xsd 

            draft-0.1/gts/dhs-gmo/1.0.0/temporalObjects.xsd 

        landxml/1.1/LandXML-1.1.xsd 

        ogc-context/1.1.0/dhs-gmo/1.0.0/context.xsd 

        ogc-filter/1.1.0/dhs-gmo/1.0.0/filter.xsd 

        ogc-gml/3.1.1/dhs-gmo/1.0.0/gml.xsd 

        ogc-observation/ 

            draft-0.14.5/ 

                om/dhs-gmo/1.0.0/commonObservation.xsd 

                om/dhs-gmo/1.0.0/event.xsd 

                om/dhs-gmo/1.0.0/observation.xsd 

                om/dhs-gmo/1.0.0/observationSpecializations.xsd 

                om/dhs-gmo/1.0.0/om.xsd 

                om/dhs-gmo/1.0.0/procedure.xsd 

                om/dhs-gmo/1.0.0/procedureSpecializations.xsd 

                st/dhs-gmo/1.0.0/simpleTypeDerivation.xsd 

                swe/dhs-gmo/1.0.0/discreteCoverage.xsd 

                swe/dhs-gmo/1.0.0/phenomenon.xsd 

                swe/dhs-gmo/1.0.0/record.xsd 

                swe/dhs-gmo/1.0.0/recordType.xsd 

                swe/dhs-gmo/1.0.0/swe.xsd 

                swe/dhs-gmo/1.0.0/SWE_basicTypes.xsd 

                swe/dhs-gmo/1.0.0/temporalAggregates.xsd 

        ogc-openls/1.1.0/dhs-gmo/1.0.0/ols.xsd 

        ogc-ows/1.0.0/dhs-gmo/1.0.0/ows.xsd 

        ogc-sld/1.0.20/dhs-gmo/1.0.0/sld.xsd 

        ogc-swe-common/1.0.0/dhs-gmo/1.0.0/data.xsd 

        ogc-swe-common/1.0.0/dhs-gmo/1.0.0/parameters.xsd 

        ogc-swe-common/1.0.0/dhs-gmo/1.0.0/positionData.xsd 

        ogc-swe-common/1.0.0/dhs-gmo/1.0.0/sweCommon.xsd 

        ogc-wfs/1.1.0/dhs-gmo/1.0.0/wfs.xsd 

        urisa-street-address/ 

            draft-0.2.0/ 

                dhs-gmo/1.0.0/StreetAddressDataStandard.xsd 

        w3c-xlink/1.0/dhs-gmo/1.0.0/xlinks.xsd 

        w3c-xml/1998/xml.xsd 

    fbi/2.0/fbi.xsd 

    fips_10-4/2.0/fips_10-4.xsd 

    fips_5-2/2.0/fips_5-2.xsd 

    fips_6-4/2.0/fips_6-4.xsd 

    geospatial/2.0/geospatial.xsd 

    have/2.0/have.xsd 

    hazmat/2.0/hazmat.xsd 

    iso_3166/2.0/iso_3166.xsd 

    iso_4217/2.0/iso_4217.xsd 

    iso_639-3/2.0/iso_639-3.xsd 

    itis/2.0/itis.xsd 

    lasd/2.0/lasd.xsd 

    mmucc_2/2.0/mmucc_2.xsd 

    mn_offense/2.0/mn_offense.xsd 

    nga/2.0/nga.xsd 
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    niem-core/2.0/niem-core.xsd 

    nlets/2.0/nlets.xsd 

    nonauthoritative-code/2.0/nonauthoritative-code.xsd 

    post-canada/2.0/post-canada.xsd 

    proxy/xsd/2.0/xsd.xsd 

    sar/2.0/sar.xsd 

    structures/2.0/structures.xsd 

    twpdes/2.0/twpdes.xsd 

    ucr/2.0/ucr.xsd 

    unece_rec20-misc/2.0/unece_rec20-misc.xsd 

    usps_states/2.0/usps_states.xsd 

    ut_offender-tracking-misc/2.0/ut_offender-tracking-misc.xsd
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20060816/. 

EBNF notation is described at #sec-notation. 

IDREF constraint is described at #idref. 

[XML-ID]:  xml:id Version 1.0, W3C Proposed Recommendation 12 July 2005.  Available from 
http://www.w3.org/TR/2005/PR-xml-id-20050712/. 

[XMLInfoSet]:  XML Information Set (Second Edition), W3C Recommendation 4 February 2004.  
Available from http://www.w3.org/TR/2004/REC-xml-infoset-20040204/. 

[XMLNamespaces]:  Namespaces in XML, World Wide Web Consortium 16 August 2006.  
Available from  http://www.w3.org/TR/2006/REC-xml-names-20060816. 

NCName is described at #NT-NCName. 
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Appendix H: Index 

This index points to important uses and definitions of key terms.  It is not intended as a 
complete index of all uses of these terms. 
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appinfo, 4 
assertion, 15 
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characteristic, 15 
child, 4 
component, 5 
CON, 7 
conformance, 6 
constraint schema, 11 
conventions, 2 
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document element, 5 
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EXT, 7 
extension schema, 9 
formatting, 3 
GJXDM, 1 
identification, 17 
InfoSet, 3, 4 
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namespace, 5 
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NDR, 1 
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parent, 4 
PMO, i 
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property, 16 
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REF, 7 
reference schema, 7 
relationship, 16 
RFC 2119, 4 
root element, 5 
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structures, 4 
SUB, 7 
subset schema, 8 
terminology, 3 
XML, 1 
XML Schema, 5 
xsd, 4 
xsi, 4 
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Appendix I: Notices 

This document and the information contained herein is provided on an “AS IS” basis and the 
authors DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS 
OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 

 




	Webb Roberts, Georgia Tech Research Institute
	Susan Liebeskind, Georgia Tech Research Institute
	Mark Kindl, Georgia Tech Research Institute
	This document specifies the data model, XML components, and XML data for use with the National Information Exchange Model (NIEM) version 2.0.
	This document is a specification for NIEM-conformant XML Schema documents, components, and instances.  It represents the design that has evolved from the collaborative work of the NIEM Business Architecture Committee (NBAC) and the NIEM Technical Arc...
	This specification is a product of the NIEM Program Management Office (PMO).
	Send comments on this specification via email to  nisshelp@ijis.org.
	Introduction
	Scope

	• The underlying NIEM data model
	• Guiding principles behind the design of NIEM
	• Rules for using XML Schema constructs in NIEM
	• Rules for modeling and structuring NIEM-conformant schemas
	• Rules for creating NIEM-conformant instances
	• Rules for naming NIEM components
	• Rules for extending NIEM-conformant components
	• A formal definition of the NIEM data model.
	Such a definition would focus on the Resource Definition Framework (RDF) and concepts not strictly required for interoperability.  This document instead focuses on definition of schemas that work with the data model, to ensure translatability and int...
	• A detailed discussion of NIEM architecture and schema versioning.
	Such rules will be addressed in [ARCH].
	• The artifacts of the NIEM information exchange process.
	The artifacts of the NIEM information exchange process are discussed in [IEPD].
	Audience
	Document Conventions
	Document References
	Normative and Informative Content
	Formatting


	• xsd: identifies keywords from the W3C XML Schema Definition Language specification.
	• xsi: identifies keywords from the W3C XML Schema's XML Schema Instance specification.
	• structures: identifies keywords from the NIEM structures namespace.
	• appinfo: identifies keywords from the NIEM appinfo namespace.
	Terminology
	RFC 2119 Terminology
	XML Information Set Terminology


	• parent of an element (Element[parent])
	child of an element (Element[children])
	Note that the InfoSet properties “Element[parent]” and “Element[children]” correspond to a direct, immediate relationship with an element.  Children of an element and their children, and so on, are collectively referred to as descendants of that elem...
	• element owning an attribute (Attribute[owner element])
	The owner of an attribute is the element that possesses or contains the attribute.
	XML Schema Terminology

	• XML Schema Part 1: Structures [XMLSchemaStructures]
	• XML Schema Part 2: Datatypes [XMLSchemaDatatypes]
	XML Namespace Terminology
	Document Organization

	• NIEM Conformance describes terminology, requirements, and artifacts related to NIEM conformance.
	• The NIEM Conceptual Model discusses the underlying semantic model for NIEM.
	• Guiding Principles discusses the principles that serve as the foundation of and guidelines  for the rules.
	• Relation to Standards discusses the use of the key standards used in the development of NIEM.
	• XML Schema Design Rules  discusses the rules for using XML Schema constructs in NIEM-conformant schemas.
	• Modeling Rules discusses the rules for the additional structures and constraints needed to build NIEM-conformant schemas.
	• XML Instance Rules  discusses the rules for NIEM-conformant XML instance documents.
	• Naming Rules discusses the rules used in naming NIEM-conformant data components.
	• A brief, non-normative overview of NIEM.
	• Indexes of principles, rules, and definitions.
	• Discussion and full listings of the NIEM 2.0 supporting schemas (structures and appinfo).
	• An itemized listing of the NIEM 2.0 reference schemas.
	• References to external standard documents.
	NIEM Conformance
	Conformance Targets Overview
	Reference Schemas

	• It is explicitly designated as a reference schema.  This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It provides the broadest, most fundamental definitions of components in its namespace.
	• It provides the authoritative definition of business semantics for components in its namespace.
	• It is intended to serve as the basis for components in IEPD schemas, including subset schemas, constraint schemas, extension schemas, and exchange schemas.
	• It satisfies all rules specified in the Naming and Design Rules for reference schemas.
	• All rules in Section 5
	• All rules in Section 6, except [Rule 6-20] through [Rule 6-22] and [Rule 6-57]
	• All rules in Section 7, except [Rule 7-69] and [Rule 7-70]
	• [Rule 8-7]
	• All rules in Section 9
	IEPD Subset Schemas

	• It is explicitly designated as a subset schema.  This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It has a target namespace previously defined by a reference schema.  That is, it does not provide original definitions for schema components, but instead provides an alternate schema representation of components that are defined by a reference schema.
	• It does not alter the business semantics of components in its namespace.  The reference schema defines these business semantics.
	• It is intended to express the limited vocabulary necessary for an IEPD and to support XML Schema validation for an IEPD.
	• It satisfies all rules specified in the Naming and Design Rules for subset schemas.
	• All rules in Section 5, except [Rule 5-4]
	• All rules in Section 6, except [Rule 6-16], [Rule 6-20] through [Rule 6-22], [Rule 6-26], [Rule 6-27], [Rule 6-46], [Rule 6-47], [Rule 6-49] through [Rule 6-51], [Rule 6-53], [Rule 6-55], and [Rule 6-57]
	• In Section 7, [Rule 7-2], [Rule 7-3], [Rule 7-37], [Rule 7-38], [Rule 7-40], [Rule 7-42] through [Rule 7-44], [Rule 7-47], [Rule 7-48], [Rule 7-51] through [Rule 7-53], [Rule 7-55]
	• All rules in Section 9
	IEPD Extension Schemas and Exchange Schemas

	• It is explicitly designated as an extension schema.  This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It provides the broadest, most fundamental definitions of components in its namespace.
	• It provides the authoritative definition of business semantics for components in its namespace.
	• It contains components that, when appropriate, use or are derived from the components in reference schemas or exchange schemas.  When a reference schema contains relevant components, it is preferred to an exchange schema.
	• It is intended to express the additional vocabulary required for an IEPD, above and beyond the vocabulary available from reference schemas, and to support XML Schema validation for an IEPD.
	• It satisfies all rules specified in the Naming and Design Rules for extension schemas.
	• It is explicitly designated as an exchange schema.  This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It provides the broadest, most fundamental definitions of components in its namespace.
	• It provides the authoritative definition of business semantics for components in its namespace.
	• It contains components that use or are derived from the components in reference schemas or exchange schemas.
	• It is intended to identify and define the document element information item for a particular information exchange that is described by an IEPD.
	• It satisfies all rules specified in the Naming and Design Rules for exchange schemas.
	• All rules in Section 5
	• All rules in Section 6, except [Rule 6-11], [Rule 6-18], [Rule 6-19], [Rule 6-29] through [Rule 6-31], [Rule 6-53], and [Rule 6-55]
	• All rules in Section 7, except [Rule 7-69] and [Rule 7-70]
	• [Rule 8-7]
	• All rules in Section 9
	IEPD Constraint Schemas

	• It is explicitly designated as a constraint schema.  This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It contains XML Schema components that exist for the purpose of (1) determining schema-validity of XML documents according to some criteria not easily expressed in other classes of schema documents, and (2) expressing those criteria in the XML Schem...
	• It has a target namespace previously defined by a reference schema, extension schema, or exchange schema, or it is intended to support a constraint schema that does have such a target namespace.
	• It is intended to express business rules for a class of XML documents, not the semantics of those XML documents.
	• It satisfies all rules specified in the Naming and Design Rules for constraint schemas.
	• In Section 5, [Rule 5-1] through [Rule 5-3]
	• In Section 6, [Rule 6-33], [Rule 6-34], and [Rule 6-35] through [Rule 6-38]
	• In Section 7, [Rule 7-2] and [Rule 7-3]
	NIEM-Conformant XML Documents and Elements

	• The document element is locally schema-valid.
	• Each element information item within the XML document that has a namespace name matching the target namespace of a reference schema, extension schema, or exchange schema is a NIEM-conformant element information item.
	• Its namespace name and local name matches an element declared by a reference schema, extension schema, or exchange schema.
	• It occurs within a NIEM-conformant XML document.
	• It is locally schema-valid.
	• It satisfies all rules specified in the Naming and Design Rules for NIEM-conformant element information items.
	• In Section 7, [Rule 7-55]
	• All rules in Section 8
	The NIEM Conceptual Model
	• NIEM's conceptual model is defined by a recognized standard.
	• NIEM's conceptual model is very well defined.
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	• An assertion that an object exists.   An occurrence of an element commonly establishes the existence of an object.  Such an object may be tangible or intangible.  For example, the element nc:Person  in an exchange implies that a person does or did e...
	Descriptions of objects may carry an implicit assumption that objects exist.  Such an assumption is dependent on the message in which such descriptions are made.  If an object that is described does not exist, it should be made explicit in the defini...
	• An assertion that an object has a characteristic.  A feature or quality of an object is commonly represented by an element appearing within the element that establishes the object.  For example, the height of a person is described by the nc:PersonHe...
	• An assertion that an object participates in a relationship.  A relationship between objects may be established in any of several ways:
	• Both objects may be referenced from an association that establishes the relationship.  Associations are also useful for expressing n-ary relationships, as well as relationships supported by additional data.
	• An element may occur within one object that indicates the relationship with the other object.  This element may be either a content element or a reference element.
	The NIEM Core schema and some domain schemas have been normalized such that a minimum number of reference or content elements establish relationships.  In these cases, use of an association is the more common method for establishing a relationship.  ...
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	This specification SHOULD specify what is necessary for semantic interoperability and no more.
	Focus on Rules for Schemas

	This specification SHOULD focus on providing rules for specifying schemas.
	Use Specific, Concise Rules

	This specification SHOULD feature rules that are as specific, precise, and concise as possible.
	XML Schema Design Guidelines
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	The content of a NIEM-conformant data instance SHOULD NOT be modified by processing against XML Schema documents.
	Use XML Validating Parsers for Content Validation

	NIEM-conformant schemas and NIEM-conformant XML documents SHOULD  use XML Schema validating parsers for validation of XML content.
	Validate for Conformance to Reference Schemas

	Systems that use NIEM-conformant data SHOULD mark as invalid data that does not conform to the rules defined by applicable XML Schema documents.
	Allow Multiple Schemas for XML Constraints

	Constraints on XML instances MAY be validated by multiple schema validation passes, using multiple schemas for a single namespace.
	Define One Reference Schema Per Namespace

	Each NIEM-conformant namespace SHOULD be defined by exactly one reference schema.
	Disallow Mixed Content

	NIEM-conformant schemas SHOULD NOT specify data that uses mixed content.
	Specify Types for All Constructs

	NIEM-conformant schemas SHOULD NOT use or define local or anonymous components, as they adversely affect reuse.
	Avoid Wildcards in Reference Schemas

	NIEM-conformant components SHOULD NOT incorporate wildcards unless absolutely necessary, as they hinder standardization by encouraging use of nonstandardized data rather than standardized data.
	Provide Default Reference Schema Locations

	Schema locations specified within NIEM-conformant reference schemas SHOULD be interpreted as hints and as default values by processing applications.
	Use Open Standards

	NIEM standards and schemas SHOULD leverage and enable use of other open standards.
	Modeling Design Guidelines
	Namespaces Enhance Reuse


	NIEM-conformant instances and schemas SHOULD reuse components from NIEM distribution schemas when possible.
	Example:
	A component SHOULD be identified by its local name together with its namespace.  A namespace SHOULD be a required part of the name of a component.  A component's local name SHOULD NOT imply a relationship to components with similar names from other n...
	Design NIEM for Extensibility

	NIEM-conformant  schemas and standards SHOULD be designed to encourage and ease extension and augmentation by users and developers outside the standardization process.
	Implementation Guidelines
	Avoid Displaying Raw XML Data


	XML data SHOULD be designed for automatic processing.  XML data SHOULD NOT be designed for literal presentation to people.  NIEM standards and schemas SHOULD NOT use literal presentation to people as a design criterion.
	Leave Implementation Decisions to Implementers

	NIEM SHOULD NOT depend on specific software packages, software frameworks, or software systems for interpretation of XML instances.
	NIEM schemas and standards SHOULD be designed such that software systems that use NIEM may be built with a variety of off-the-shelf and free software products.
	Modeling Guidelines
	Documentation


	A data component definition SHOULD be drafted before the associated data element name is composed.
	Consistent Naming

	1. It is easier to determine the nature of a component when it has a name that conveys the meaning and use of the component.
	2. It is easier to find a component when it is named predictably.
	3. It is easier to create a name for a component when clear guidelines exist.
	Components in NIEM SHOULD be given names that are consistent with names of other NIEM components.  Such names SHOULD be based on simple rules.
	Reflect the Real World

	Component definitions in NIEM-conformant schemas SHOULD reflect real-world concepts.
	Be Consistent

	Component definitions in NIEM-conformant schemas SHOULD have semantic consistency.
	Reserve Inheritance for Specialization

	Complex type definitions in NIEM-conformant schemas SHOULD use type inheritance only for specialization.
	Do Not Duplicate Definitions

	Multiple components with identical or undifferentiated semantics SHOULD NOT be defined.  Component definitions SHOULD have clear, explicit distinctions.
	Keep It Simple

	NIEM-conformant schemas SHOULD have the simplest possible structure, content, and architecture consistent with real business requirements.
	Be Aware of Scope

	Components defined by NIEM-conformant schemas SHOULD be defined appropriate for their scope.
	Be Mindful of Namespace Cohesion
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	XML 1.0
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	The schema MUST conform to XML as specified by [XML].
	Rationale
	XML is a well-known, commonly used W3C Recommendation.  It is supported by a large number of commercial and open-source software tools.  It is a simple, well-defined, semi-structured data format that is flexible enough to allow for easy extension.  X...
	XML Namespaces
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	The schema MUST conform to the specification for namespaces in XML, as defined by [XMLNamespaces] and [XMLNamespacesErrata].
	Rationale
	NIEM is designed to facilitate cross-domain data exchanges and interoperability.  The ultimate scope of NIEM is anticipated to be quite large.  The primary purpose of namespaces is to avoid naming conflicts, which for NIEM could become quite common, ...
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	The schema MUST conform to the W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes, as specified by [XMLSchemaStructures] and [XMLSchemaDatatypes].
	Rationale
	XML Schema has become the generally accepted schema language and is experiencing the most widespread adoption. Although other schema languages exist that offer their own advantages and disadvantages, the current approach is to base NIEM on XML Schema.
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	In a NIEM-conformant schema, a documented component is an XML Schema component that has  an associated data definition.  These schema components have a textual definition, so that the component may be well-understood.  Schemas that do not document th...
	The data definition of a documented component is the content of the first occurrence of the element xsd:documentation, which is an immediate child of an occurrence of the element xsd:annotation, which is an immediate child of the element that defines...
	[Rule 5-4] (REF, EXT)

	Within a NIEM-conformant schema, the data definition provided for each documented component SHALL follow the requirements and recommendations for data definitions given by [ISO 11179 Part 4].
	Rationale
	To advance the goal of creating semantically rich NIEM-conformant schemas, it is necessary that data definitions be descriptive, meaningful, and precise.  [ISO 11179 Part 4]  provides standard structure and rules for defining data definitions.  NIEM ...
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	A NIEM component name SHALL be formed by applying the informative guidelines and examples detailed in Annex A of [ISO 11179 Part 5], with exceptions as specified in this document, most notably those specified in Section 9, Naming Rules.
	Rationale
	The guidelines and examples of [ISO 11179 Part 5] provide a simple, consistent syntax for data names that captures context and thereby imparts a reasonable degree of semantic precision.
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	• xsd:schema Document Element
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	Within the schema, an element xsd:complexType SHALL NOT own the attribute mixed with the value true.
	[Rule 6-2] (REF, SUB, EXT)

	Within the schema, an element declaration that is of complex content SHALL NOT own the attribute mixed with the value true.
	Rationale
	Mixed content allows the mixing of data tags with text.  Languages such as XHTML use this syntax for markup of text.  NIEM-conformant schemas define XML that is for data exchange, not text markup.  Mixed content creates complexity in processing, defi...
	Well-defined markup languages exist outside NIEM and may be used with NIEM data.  External schemas may include mixed content and may be used with NIEM.  However, mixed content must not be defined by NIEM-conformant schemas in keeping with [Principle 9].
	No Notations
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	The schema SHALL NOT contain a reference to the type definition xsd:NOTATION or to a type derived from that type.
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	The schema SHALL NOT contain the element xsd:notation.
	Rationale
	XML Schema notations allow the attachment of system and public identifiers on fields of data.  The notation mechanism does not play a part in validation of instances and is not supported by NIEM.
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	The schema SHALL NOT contain the element xsd:include.
	Rationale
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	Inclusion of schemas that do not have namespaces also complicates schema understanding. This inclusion makes it difficult to find the realization of a specific schema artifact and create aliases for schema components that should be reused.  Inclusion...
	No Schema Redefinition
	[Rule 6-6] (REF, SUB, EXT)


	The schema SHALL NOT contain the element xsd:redefine.
	Rationale
	The xsd:redefine element allows an XML Schema document to restrict and extend components from a namespace, in that very namespace.  Such redefinition introduces duplication of definitions, allowing multiple definitions to exist for components from a ...
	Wildcard Restrictions
	No Unconstrained Type Substitution
	[Rule 6-7] (REF, SUB, EXT)



	The schema SHALL NOT reference the type xsd:anyType.
	Rationale
	XML Schema has the concept of the "ur-type," a type that is the root of all other types.  This type is realized in schemas as xsd:anyType.
	NIEM-conformant schemas must not use xsd:anyType, because this feature permits the introduction of arbitrary content (i.e., untyped and unconstrained data) into an XML instance. NIEM intends that the schemas describing that instance describe all cons...
	No Unconstrained Text Substitution
	[Rule 6-8] (REF, SUB, EXT)


	The schema SHALL NOT reference the type xsd:anySimpleType.
	Rationale
	XML Schema provides a restriction of the “ur-type,” which contains only simple content.  This provides a wildcard for arbitrary text.  It is realized in XML Schema as xsd:anySimpleType.
	NIEM-conformant schemas must not use xsd:anySimpleType because this feature is insufficiently constrained to provide a meaningful starting point for content definitions. Instead, content should be based on one of the more specifically defined simple ...
	Untyped Elements Must Be Abstract
	[Rule 6-9] (REF, SUB, EXT)


	Within the schema, an element declaration with the attribute name and without the attribute type MUST carry the attribute abstract with the value true.
	Rationale
	Untyped element declarations act as wildcards that may carry arbitrary data.  By declaring such types abstract, NIEM allows the creation of type independent semantics without allowing arbitrary content to appear in XML instances.
	No Untyped Attributes
	[Rule 6-10] (REF, SUB, EXT)


	Within the schema, an attribute declaration with attribute name MUST carry the attribute type.
	Rationale
	Untyped XML Schema attributes allow arbitrary content, with no semantics.  Attributes must have a type so that specific syntax and semantics will be provided.
	No Unconstrained Element Substitution
	[Rule 6-11] (REF, SUB)


	The schema SHALL NOT contain the element xsd:any.
	Rationale
	The xsd:any particle (see Model Group Restrictions for an informative definition of particle) provides a wildcard that may carry arbitrary content.  The particle xsd:any may appear within constraint schemas, extension schemas, and exchange schemas.
	No Unconstrained Attribute Substitution
	[Rule 6-12] (REF, SUB, EXT)


	The schema SHALL NOT contain the element xsd:anyAttribute.
	Rationale
	The xsd:anyAttribute element provides a wildcard, where arbitrary attributes may appear.  The element xsd:anyAttribute may appear within constraint schemas or within other schemas that are not NIEM-conformant, but it is prohibited in NIEM-conformant ...
	Component Naming Restrictions
	No Anonymous Type Definitions
	[Rule 6-13] (REF, SUB, EXT)



	Within the schema, any occurrence of the element xsd:complexType or xsd:simpleType  MUST appear as an immediate child of the element xsd:schema.
	Rationale
	NIEM does not support anonymous types in NIEM-conformant schemas.  All XML Schema "top-level" types (children of the document element) are required by XML Schema to be named. By requiring NIEM type definitions to be top level, they are forced to be n...
	No Local Element Declarations
	[Rule 6-14] (REF, SUB, EXT)


	Within the schema, any element declaration carrying the attribute name MUST appear as an immediate child of the document element xsd:schema.
	Rationale
	All schema components defined by NIEM-conformant schemas must be named, accessible from outside the defining schema, and reusable across schemas.  Local element definitions provide named elements that are not reusable outside the context in which the...
	No Local Attribute Definitions
	[Rule 6-15] (REF, SUB, EXT)


	Within the schema, any attribute declaration owning the attribute name MUST appear as an immediate child of the document element xsd:schema.
	Rationale
	All schema components defined by NIEM-conformant schemas are named, accessible from outside the defining schema, and reusable across schemas.  Local attribute definitions provide named attributes that are not reusable outside the context in which the...
	No Uniqueness Constraints
	[Rule 6-16] (REF, EXT)


	The schema SHALL NOT contain any of the elements xsd:unique, xsd:key, xsd:keyref, xsd:selector, or xsd:field.
	Rationale
	XML Schema provides NIEM with the ability to apply uniqueness constraints to schema-validated content.  These mechanisms, however, establish relationships in a way that is very difficult to understand, extend, and keep consisent through schema reuse....
	Model Group Restrictions
	Restrictions on Particle Ordering
	[Rule 6-17] (REF, SUB, EXT)



	The schema SHALL NOT contain the element xsd:all.
	Rationale
	The element xsd:all provides a set of particles (e.g., elements) that may be included in an instance, in no particular order.  This can greatly complicate processing and may be difficult to comprehend and satisfy.
	[Rule 6-18] (REF)

	The schema SHALL NOT contain the element xsd:choice.
	Rationale
	The element xsd:choice provides an exclusive set of particles, one of which may appear in an instance.  This can greatly complicate processing and may be difficult to comprehend, satisfy, and reuse.
	The element xsd:choice may be used in extension and exchange schemas, as it presents a simple way for a schema writer to represent a set of optional content.  It may also be used in subset schemas and constraint schemas to represent syntactic alterna...
	No Recursively Defined Model Groups
	[Rule 6-19] (REF, SUB)


	Within the schema, any immediate child of a model group xsd:sequence element MUST be one of xsd:annotation or   xsd:element
	[Rule 6-20] (EXT)

	Within the schema, any immediate child of a model group xsd:sequence element MUST be one of xsd:annotation,  xsd:element, xsd:choice, or xsd:any.
	[Rule 6-21] (EXT)

	Within the schema, any immediate child of a model group xsd:choice element MUST be one of xsd:annotation or xsd:element.
	[Rule 6-22] (EXT)

	The use of xsd:choice SHALL define syntax, structure, grouping, and cardinality of instances, but SHALL NOT define semantics.  The semantics of a property within an xsd:choice SHALL be identical to the semantics of the property within an xsd:sequence.
	Rationale
	XML Schema provides the capability for model groups to be recursively defined.  This means that a sequence may contain a sequence, and a choice may contain a choice.  These rules are designed to keep content models simple, comprehensive, and reusable...
	Restrictions on Named Groups
	[Rule 6-23] (REF, SUB, EXT)


	The schema SHALL NOT contain the element xsd:group.
	Rationale
	NIEM does not allow groups of elements to be named other than as named complex types.  A group in XML Schema creates a named entity that may be included in multiple types, and which consists of a sequence of or choice between element particles.  The ...
	Particle Cardinality Restrictions
	[Rule 6-24] (REF, SUB, EXT)


	Within the schema, if the element xsd:sequence carries the attribute minOccurs, it MUST set the value for the attribute to 1.
	[Rule 6-25] (REF, SUB, EXT)

	Within the schema, if the element xsd:sequence carries the attribute maxOccurs, it MUST set the value of the attribute to 1.
	Rationale
	XML Schema allows each particle to specify cardinality (how many times the particle may appear in an instance). NIEM restricts the cardinality of xsd:sequence particles to exactly one, to ensure that content model definitions are defined in as straig...
	Discussion
	Note that the particle xsd:any is not allowed in reference schemas or subset schemas by [Rule 6-11]
	Note also that element declarations acting as a particle (particles formed by xsd:element) may have any cardinality; they are not restricted by this rule.  Should a user desire the behavior that would be obtained from the use of special cardinalities...
	Block Substitution Restrictions

	1. An instance of this element declaration may not substitute an extended type.
	2. An instance of this element declaration may not substitute a restricted type.
	3. An instance of this element declaration may not substitute another element.
	[Rule 6-26] (REF, EXT)

	Within the schema, if an element declaration carries the attribute block, it MUST set the value for the attribute to the empty string.
	[Rule 6-27] (REF, EXT)

	Within the schema, if a complex type definition carries the attribute block, it MUST set the value for the attribute to the empty string.
	[Rule 6-28] (REF, SUB, EXT)

	Within the schema, if the document element xsd:schema carries the attribute blockDefault, it MUST set the value for the attribute to the empty string.
	Rationale
	Restriction of substitution options reduces capacity for reuse; thus, it is forbidden within NIEM-conformant schemas   In particular, setting the block value at the schema level complicates understanding of component definitions.
	Final Value Restrictions
	[Rule 6-29] (REF, SUB)


	Within the schema, if a simple type definition carries the attribute final, it MUST set the value for the attribute to the empty string.
	[Rule 6-30] (REF, SUB)

	Within the schema, if a complex type definition carries the attribute final, it MUST set the value for the attribute to the empty string.
	[Rule 6-31] (REF, SUB)

	Within the schema, if an element declaration carries the attribute final, it MUST set the value for the attribute to the empty string.
	[Rule 6-32] (REF, SUB, EXT)

	Within the schema, if the document element xsd:schema carries the attribute finalDefault, it MUST set the value for that attribute to the empty string.
	Rationale
	Restriction of derivation options reduces capacity for reuse and so is forbidden within reference and subset schemas.  As well, the use of finalDefault complicates understanding of schemas, so it is only allowed in constraint schemas.
	Default Value Restrictions
	[Rule 6-33] (REF, SUB, EXT, CON)


	Within the schema, any element xsd:element SHALL NOT carry the attribute default.
	[Rule 6-34] (REF, SUB, EXT, CON)

	Within the schema, any element xsd:attribute SHALL NOT carry the attribute default.
	Rationale
	The use of default values means that the act of validating a schema will insert a value into an XML instance where none existed prior to schema validation.  Schema validation is for rejection of invalid instances, not for modifying instance content, ...
	xsd:schema Document Element
	[Rule 6-35] (REF, SUB, EXT, CON)


	Within the schema, the document element xsd:schema MUST carry the attribute targetNamespace.
	[Rule 6-36] (REF, SUB, EXT, CON)

	Within the schema, the value of the required attribute targetNamespace on the document element xsd:schema MUST match the production <absolute-URI> as defined by [RFC3986].
	Rationale
	Schemas without defined namespaces provide definitions that are ambiguous, in that they are not universally identifiable.
	Absolute URIs are the only universally meaningful URIs.  URIs include both URLs and URNs.  Finding the target namespace using standard XML Base technology is complicated and not specified by XML Schema.  Relative URIs are not universally identifiable...
	Discussion
	The document element xsd:schema may contain optional attributes attributeFormDefault  and elementFormDefault.  The values of these attributes are immaterial to a NIEM-conformant schema, as each attribute defined by a NIEM-conformant schema must be de...
	[Rule 6-37] (REF, SUB, EXT, CON)

	Within the schema, the document element xsd:schema MUST carry the attribute version.
	[Rule 6-38] (REF, SUB, EXT, CON)

	Within the schema, the value of the required attribute version on the document element xsd:schema MUST NOT be an empty string.
	Rationale
	It is very useful to be able to tell one version of a schema from another.  Apart from the use of namespaces for versioning, it is sometimes necessary to release multiple versions of schema documents.  Such use might include:
	• Subset schemas and constraint schemas
	• Error corrections or bug fixes
	• Documentation changes
	• Contact information updates
	In such cases, a different value for the version attribute implies a different version of the schema.  No specific meaning is assigned to specific version identifiers.
	Note that some of the above uses for the version attribute are not employed in management of NIEM Core and domain schemas.  An author of an application schema or exchange may use the version attribute for these purposes within their schemas.
	Namespace Imports

	1. Is not the local namespace, and
	2.  Is referenced from the schema.
	xsd:import Element Restrictions
	[Rule 6-39] (REF, SUB, EXT)


	Within the schema, the element xsd:import MUST carry the attribute namespace.
	[Rule 6-40] (REF, SUB, EXT)

	Within the schema, the value of the required attribute namespace  owned by the element xsd:import MUST match the production <absolute-URI> as defined by [RFC3986].
	Rationale
	An import that does not specify a namespace is enabling reference to non-namespaced components.  NIEM requires that all components have a defined namespace.  It is important that the namespace declared by a schema be universally defined and unambiguo...
	[Rule 6-41] (REF, SUB, EXT)

	Within the schema, the element xsd:import MUST carry the attribute schemaLocation.
	Rationale
	An import that does not specify a schema location gives no clue to processing applications as to where to find an implementation of the namespace.  Even though such a provided schema location may be overridden, it is important that an initial default...
	[Rule 6-42] (REF, SUB, EXT)

	Within the schema, the value of the required attribute schemaLocation carried by the element xsd:import MUST match either the production <absolute-URI> or the definition of "relative-path reference," as defined by [RFC3986].
	Rationale
	The default value may be specified either as absolute or relative URIs.  Since URNs are not resolvable, they are inappropriate for use in schemaLocation.  The requirement for conformance to "relative-path reference" is required to avoid the more obsc...
	[Rule 6-43] (REF, SUB, EXT)

	Within the schema, the value of the required attribute schemaLocation carried by the element xsd:import MUST be resolvable to a XML schema document file that is valid according to [XMLSchemaStructures] and [XMLSchemaDatatypes].
	Rationale
	The XML Schema specification requires that the object imported via xsd:import must be a schema document.  This rule reinforces that requirement.
	Discussion
	Note that relative URI references are dereferenced from the location of the schema document performing the import, not from the location of an instance or other schema.  Although NIEM distribution schemas use only relative URI references, that need n...
	Including XML Content From Other Namespaces

	1. Carrying attributes from other than the XML or XML Schema namespaces on an element in the XML Schema namespace.
	By the rules of XML Schema, any element may have attributes that are from other namespaces.  These attributes do not participate in validation but may carry information useful to tools that process schemas.
	2. Adding content to the elements xsd:appinfo and xsd:documentation.
	XML Schema allows arbitrary XML content to be included within annotations.  Such XML does not participate in validation but may communicate useful information to schema readers or processors.
	1. Some tools require imports of namespaces used within schemas and validate against those schemas.
	2. The definition and the validity of content within schemas should be clear.
	[Rule 6-44] (REF, SUB, EXT)

	Within the schema, when a namespace other than the XML namespace or the XML Schema namespace is used, it MUST be imported into the schema using the xsd:import element.
	Rationale
	This rule ensures that used namespaces have recognizable defining sources and that they will cooperate with existing tools.
	[Rule 6-45] (REF, SUB, EXT)

	Within the schema, when a namespace other than the XML namespace or the XML Schema namespace is used, its content MUST be valid with respect to the schema imported for that namespace.
	Rationale
	XML Schema does not address the schema-validity of content used for annotations or attributes on schema components.  This rule ensures that content used in such a manner is schema-valid.  This encourages interoperable data definitions and schema docu...
	Annotations
	[Rule 6-46] (REF, EXT)


	Within the schema, an element SHALL have at most one instance of an element xsd:annotation as an immediate child.
	Rationale
	XML Schema allows annotations to be added to components in a fairly loose manner: there may be multiple annotations, each of which may have multiple documentation or appinfo elements.  This flexibility in the syntax provides no additional expressivit...
	Human-Readable Documentation
	[Rule 6-47] (REF, EXT)


	Within the  schema, the content of the xsd:documentation element that constitutes the data definition of a component MUST be character information items as specified by [XMLInfoSet].
	Rationale
	According to the XML Schema specification, the content of xsd:documentation elements is intended for human consumption, whereas other structured XML content is intended for machine consumption.  Therefore, the xsd:documentation element MUST NOT conta...
	See [SchemaForXMLSchema], the schema for XML Schema, as an example of documentation elements containing properly escaped XML elements.
	[Rule 6-48] (REF, SUB, EXT)

	XML comments SHALL not be used for persistent information about constructs within the schema.
	Rationale
	Since XML comments are not associated with any specific XML Schema construct, there is no standard way to interpret comments.  As such, comments should be reserved for internal use, and XML Schema annotations should be preferred for meaningful inform...
	Machine-Readable Annotations
	[Rule 6-49] (REF, EXT)


	Within the schema, any immediate child of an xsd:appinfo element SHALL be an element information item or a comment information item.
	Rationale
	Application information elements are intended for automatic processing; thus they should contain machine-oriented data, XML.
	[Rule 6-50] (REF, EXT)

	Within the schema, any element that is an immediate child of an xsd:appinfo element SHALL be in a namespace.
	Rationale
	Use of default namespace is allowed, but content has to have a real namespace, and namespaces must be declared.  The XML namespaces specification includes the concept of content not in a namespace. Non-namespaced data runs counter to the principle of...
	[Rule 6-51] (REF, EXT)

	Within the schema, an element in the XML Schema namespace MUST NOT occur as a descendant of any element xsd:appinfo.
	Rationale
	NIEM-conformant schemas are designed to be very easily processed.  Although uses of XML Schema elements as content of xsd:appinfo elements could be contrived, it is not current practice and could seriously complicate the authoring of schema validator...
	Type Definitions
	Complex Type Definitions
	[Rule 6-52] (REF, SUB, EXT)



	Within the schema, the element xsd:complexType MUST have as an immediate child either the element xsd:complexContent or the element xsd:simpleContent.
	Rationale
	XML Schema provides shorthand to defining complex content of a complex type, which is to define the complex type with immediate children that specify elements, or other groups, and attributes.  In the desire to normalize schema representation of type...
	Simple Content (CSC) Restrictions

	1. By extension of an existing CSC.
	2. By extension of an existing simple type.
	[Rule 6-53] (REF)

	Within the schema, the element xsd:simpleContent MUST have as an immediate child the element xsd:extension.
	Rationale
	This rule ensures that the definition of a CSC will use the XML Schema extension facility.  This allows for the above cases while disallowing much more complicated syntactic options available in XML Schema.
	Note that the applicability of the above rule allows for use of xsd:restriction within xsd:simpleContent in subset schemas, extension schemas, and exchange schemas.
	[Rule 6-54] (REF, SUB, EXT)

	Within the schema, given an element xsd:simpleContent with a child xsd:extension owning an attribute base, if the attribute base has a value that resolves to the name of a simple type, then the element xsd:extension MUST have an immediate child eleme...
	This rule ensures that a CSC that is created as an immediate extension of a simple type adds the attributes required for specific NIEM linking mechanisms.  The attribute group is required to be structures:SimpleObjectAttributeGroup by [Rule 6-59].
	This creates a pattern for CSC definition as follows:
	Complex Content (CCC) Restrictions

	1. By extension of an existing complex type (CCC or CSC).
	2. By extension of the type structure:ComplexObjectType.
	[Rule 6-55] (REF)

	Within the schema, the element xsd:complexContent MUST have as an immediate child the element xsd:extension.
	Rationale
	NIEM does not support, as conformant, the use of complex type restriction.  NIEM defines a language, in which specific content is allowed.  It does not specify messages that forbid content.  Such restrictions may be performed in nonconformant schemas...
	Note that XML Schema requires use of the attribute base on xsd:extension.
	Note also that the applicability allows for the use of restriction in subset schemas, extension schemas, exchange schemas, and constraint schemas.
	[Rule 6-56] (REF, SUB, EXT)

	Within the schema, given an element xsd:complexContent with a child xsd:extension owning an attribute base, the attribute base MUST have a value that resolves to the name of one of the following:
	1. The type structures:ComplexObjectType.
	2. The type structures:MetadataType.
	3. The type structures:AugmentationType.
	4. A complex type that is a NIEM-conformant component.
	This rule ensures that a CCC has well-defined ancestry.  In turn, this ensures that every CCC has well-defined semantics.
	[Rule 6-57] (EXT)

	Within the schema, given an element xsd:complexContent with a child xsd:restriction owning an attribute base, the attribute base MUST have a value that resolves to the name of a complex type that is a NIEM-conformant component.
	This ensures that a CCC defined through restriction has well-defined semantics.
	Additional Definitions and Declarations
	Element Declarations
	Attribute Declarations
	Attribute Group Definitions
	[Rule 6-58] (REF, SUB, EXT)



	Within the schema, any occurrence of the element xsd:attributeGroup MUST own an attribute ref.
	The only attribute group used in NIEM-conformant schemas is structures:SimpleObjectAttributeGroup, as established by rules [Rule 6-59] and [Rule 7-39].  Therefore, NIEM-conformant schemas do not define additional attribute groups.
	[Rule 6-59] (REF, SUB, EXT)

	Within the schema, the attribute ref owned by any element xsd:attributeGroup MUST have a value of a qualified name (possibly using the default namespace) that SHALL resolve to the namespace for the NIEM structures namespace and the local name SimpleO...
	The only attribute group used within NIEM-conformant schemas is structures:SimpleObjectAttributeGroup.  Therefore, within a NIEM-conformant schema, only this attribute group can be referenced.
	Modeling Rules
	1. They provide support for connecting structural definitions to concepts.
	2. They provide base components from which to derive structural definitions.
	xsd:schema Document Element Restrictions
	[Rule 7-1] (REF, EXT)


	Within the schema, the document element xsd:schema MUST have application information appinfo:ConformantIndicator, with text content "true".
	Rationale
	The appinfo:ConformantIndicator element is how NIEM-conformant schemas indicate that they are, in fact, NIEM-conformant.  Without such an indicator, conformance would have to be "guessed" by readers and processors.
	[Rule 7-2] (REF, SUB, EXT, CON)

	Two XML Schema documents SHALL have the same value for attribute targetNamespace carried by the element xsd:schema, if and only if they represent the same set of components.
	[Rule 7-3] (REF, SUB, EXT, CON)

	Two XML Schema documents SHALL have the same value for attribute targetNamespace carried by the element xsd:schema, and different values for attribute version carried by the element xsd:schema if and only if they are different views of the same set o...
	Rationale
	These rules embody the basic philosophy behind NIEM's use of namespaced components: A component is uniquely identified by its class (e.g. element, attribute, type), its namespace (a URI), and its local name (an unqualified string).  Any two matching ...
	Annotations

	1. A text definition of each component.  This describes what the component means.  The term used in this specification for such a text definition is data definition.
	2. The structural definition of each component.  This is made up of XML Schema component definitions, along with certain application information (appinfo).
	Human-Readable Documentation
	[Rule 7-4] (REF, EXT)


	Within the schema, any element xsd:complexType  MUST be a documented component.
	[Rule 7-5] (REF, EXT)

	Within the schema, any element xsd:simpleType  MUST be a documented component.
	[Rule 7-6] (REF, EXT)

	Within the schema, any element xsd:element that is an immediate child of an element xsd:schema  MUST be a documented component.
	[Rule 7-7] (REF, EXT)

	Within the schema, any element xsd:attribute that is an immediate child of an element xsd:schema  MUST be a documented component.
	[Rule 7-8] (REF, EXT)

	Within the schema, any element xsd:enumeration MUST be a documented component.
	[Rule 7-9] (REF, EXT)

	Within the schema, the document element xsd:schema MUST be a documented component.
	[Rule 7-10] (REF, EXT)

	Words or synonyms for the words within a data element definition SHALL NOT be reused as terms in the corresponding component name if those words dilute the semantics and understanding of, or impart ambiguity to, the entity or concept that the compone...
	[Rule 7-11] (REF, EXT)

	An object class SHALL have one and only one associated semantic meaning (i.e., a single word sense) as described in the definition of the component that represents that object class.
	[Rule 7-12] (REF, EXT)

	An object class SHALL NOT be redefined within the definitions of the components that represent properties or subparts of that entity or class.
	Rationale
	Data definitions should be concise, precise, and unambiguous without embedding additional definitions of data elements that have already been defined once elsewhere (such as object classes).  [ISO 11179 Part 4] says that definitions should not be nes...
	[Rule 7-13] (REF, EXT)

	A data definition SHALL NOT contain explicit representational or data typing information such as number characters, type of characters, etc., unless the very nature of the component can be described only by such information.
	Rationale
	A component definition is intended to describe semantic meaning only, not representation or structure.  How a component with simple content is represented is indicated through the representation term and further refined through constraints.
	[Rule 7-14] (REF, EXT)

	A component definition SHALL begin with a standard opening phrase that depends on the class of the component per Table 7-1:  Standard Opening Phrases:
	A standard opening phrase based on component class helps to ensure consistent definitions that appropriate for the type of component item being defined.  These opening phrases also provide a cue that facilitates recognition of the particular kind of ...
	Machine-Readable Annotations

	The appinfo namespace is the namespace represented by the URI "http://niem.gov/niem/appinfo/2.0".
	[Rule 7-15] (REF, EXT)

	The schema SHALL import the appinfo namespace.
	Rationale
	For uniformity, all NIEM-conformant schemas must import the appinfo namespace.
	A component is said to have application information of some element E when the root element that defines the component has an immediate child element xsd:annotation, which has an immediate child element xsd:appinfo, which has as an immediate child th...
	Deprecation

	In a particular NIEM-conformant namespace, a deprecated component is one whose use is not recommended, yet which is maintained in the schema for compatibility with previous versions of the namespace.
	[Rule 7-16] (REF, EXT)

	A component that is deprecated SHALL be indicated as such by the component having application information appinfo:Deprecated, with an attribute value with a value of true.
	Rationale
	Deprecation can allow version management to be more consistent; versions of schema may be incrementally improved without introducing validation problems and incompatibility.  As XML Schema lacks a deprecation mechanism, NIEM defines such a mechanism.
	Indicating Conformance

	1. To indicate that a schema is conformant or that it represents a conformant namespace.
	2. To indicate that an imported schema is not conformant or represents a nonconformant namespace.
	Bases of Derived Components
	[Rule 7-17] (REF, EXT)


	Within the schema, the element appinfo:Base MAY be used in one of the following ways:
	1. By a type definition, to indicate the base type, or structures:Object or structures:Association.
	2. By an element declaration, to indicate the base element.
	The element appinfo:Base SHALL NOT be used for any other purpose.
	Rationale
	The appinfo:Base element is required to clarify semantics of types as object or association types, when such derivation is not otherwise derivable from the component definitions.
	[Rule 7-18] (REF, EXT)

	Within the schema, the element appinfo:Base SHALL indicate, by namespace and name, one of the following:
	1. A NIEM-conformant schema component.
	2. structures:Object.
	3. structures:Association.
	[Rule 7-19] (REF, EXT)

	Within the schema, an attribute appinfo:namespace owned by an element appinfo:Base SHALL have a value of either of the following:
	1. A namespace which is the target namespace of a NIEM-conformant schema.
	2. The structures namespace.
	[Rule 7-20] (REF, EXT)

	Within the schema, an element appinfo:Base  that does not own an attribute appinfo:namespace SHALL refer to the target namespace of the schema in which it is used.
	[Rule 7-21] (REF, EXT)

	Within the schema, an element appinfo:Base SHALL own an attribute appinfo:name.
	[Rule 7-22] (REF, EXT)

	Within the schema, if an element appinfo:Base indicates a NIEM-conformant namespace, then the value of the attribute appinfo:name owned by the element appinfo:Base SHALL indicate a schema component in the indicated namespace.
	[Rule 7-23] (REF, EXT)

	Within the schema, if an element appinfo:Base indicates the structures namespace, then the value of the attribute appinfo:name owned by the element appinfo:Base SHALL have a value of one of the following:
	1. structures:Object.
	2. structures:Association.
	3. A schema component defined by the structures schema.
	Rationale
	Together, this set of rules establishes the element appinfo:Base as a reference to either a NIEM-conformant schema component or to a special NIEM component, which acts as the base for the containing schema component.
	Application of Constructs
	[Rule 7-24] (REF, EXT)


	Within the schema, the element appinfo:AppliesTo MAY be used in any of the following ways:
	1. To indicate a base type to which an augmentation may be applied.
	2. To indicate a base type to which a metadata type may be applied.
	The element appinfo:AppliesTo SHALL NOT be used for any other purpose.
	Rationale
	The appinfo:AppliesTo  element is required to express constraints beyond those available within XML Schema.  Use of this element allows advanced processing of instances and schemas for type safety.
	[Rule 7-25] (REF, EXT)

	Within the schema, the element appinfo:AppliesTo SHALL indicate a schema component by namespace and name.
	[Rule 7-26] (REF, EXT)

	Within the schema, an attribute appinfo:namespace owned by an element appinfo:AppliesTo SHALL indicate the namespace of the type to which appinfo:AppliesTo refers.  The indicated namespace SHALL be defined by a NIEM-conformant schema.
	[Rule 7-27] (REF, EXT)

	Given that the element appinfo:AppliesTo refers to a type, the applicability described by the element SHALL be understood to be the indicated type or a type transitively derived from the indicated type.
	[Rule 7-28] (REF, EXT)

	Within the schema, an element appinfo:AppliesTo  that does not carry an attribute appinfo:namespace SHALL refer to the target namespace of the schema in which it is used.
	[Rule 7-29] (REF, EXT)

	Within the schema, an element appinfo:AppliesTo SHALL carry an attribute appinfo:name.  The value of this attribute SHALL indicate the local name of a schema component within the namespace specified by the element.
	Rationale
	Together, this set of rules establishes the element appinfo:AppliesTo as a reference to a NIEM-conformant schema component to which a NIEM construct may be applied.
	Targets of References
	[Rule 7-30] (REF, EXT)


	Within the schema, the element appinfo:ReferenceTarget SHALL identify the XML Schema type definition of an element information item to which an instance of a reference element may validly refer.  The element appinfo:ReferenceTarget SHALL NOT be used ...
	This describes the meaning of a reference target.  The term type definition is as used in [XMLSchemaStructures], in the PSVI (post-schema-validation infoset) definition for an element information item.  The element appinfo:ReferenceTarget  is require...
	[Rule 7-31] (REF, EXT)

	Within the schema, a reference element MUST have at most one instance of the element appinfo:ReferenceTarget.
	Rationale
	Content elements in XML Schema may have at most one type.  This rule ensures that reference elements follow the same pattern.
	[Rule 7-32] (REF, EXT)

	Within the schema, the element appinfo:ReferenceTarget SHALL indicate a type definition schema component, by namespace and name.
	[Rule 7-33] (REF, EXT)

	Within the schema, an attribute appinfo:namespace carried by an element appinfo:ReferenceTarget SHALL indicate the namespace of the referenced schema component.  The indicated namespace SHALL be defined by a reference or extension schema.
	[Rule 7-34] (REF, EXT)

	Within the schema, an element appinfo:ReferenceTarget  that does not carry an attribute appinfo:namespace SHALL refer to the target namespace of the schema in which it is used.
	[Rule 7-35] (REF, EXT)

	Within the schema, an element appinfo:ReferenceTarget SHALL carry an attribute appinfo:name.  The value of this attribute SHALL indicate the local name of a type definition schema component within the namespace specified by the element.
	Rationale
	Together, this set of rules establishes the element appinfo:ReferenceTarget as a reference to a NIEM-conformant type definition schema component that a reference element instance may reference.
	Simple Type Definitions
	[Rule 7-36] (REF, SUB, EXT)


	Within the schema, a simple type definition that uses xsd:list SHOULD NOT be defined if any member of the list requires a property or metadata that is different than other members of the list.  All members of the list SHOULD have the same metadata, a...
	Rationale
	The members of a list are not individually addressable by NIEM metadata techniques.  The members are also not individually addressable by properties; a property has a value of all the members of the list.  NIEM provides no method for individually add...
	Complex Type Definitions
	[Rule 7-37] (REF, SUB, EXT)


	Within the schema, a complex type definition SHALL be one of the following classes of types:
	1. An object type.
	2. A role type.
	3. An association type.
	4. A metadata type.
	5. An augmentation type.
	6. An adapter type.
	Rationale
	This rule establishes the classes of NIEM complex types.  It is a limited set, each class with distinct semantics.
	[Rule 7-38] (REF, SUB, EXT)

	Within the schema, an element MUST NOT be introduced more than once into the direct content of a type definition.  This applies to content acquired through extension of base types.  This does not apply to a base element or derived element to one prev...
	Rationale
	This rule ensures that sequences of elements are simple sequences.  A type should not define, for example, a sequence of elements A, B, then A again.  Definitions should define, instead, what elements may be included, and their cardinality.  Specific...
	Object Types

	In a NIEM-conformant schema, an object type is a complex type definition, an instance of which asserts the existence of an object.  An object type represents some kind of object:  a thing with its own lifespan that has some existence.  The object may...
	[Rule 7-39] (REF, EXT)

	Within the schema, an object type SHALL be a complex type definition that either constitutes a NIEM-conformant component or for which there exists a NIEM-conformant component of one of the following forms:
	1. Has simple content, is based on a simple type, and contains the attribute group structures:SimpleObjectAttributeGroup, and has application information appinfo:Base of structures:Object.
	2. Has complex content, and is based on complex type structures:ComplexObjectType, and has application information appinfo:Base of structures:Object.
	3. Is a complex type that is derived from an object type, which is defined according to this rule.
	Rationale
	Object types are at the core of NIEM.  They are built in a uniform way, from a simple design pattern: they take one of the two "root" forms outlined above, or  they are built from other object types, depending on whether they are of simple or complex...
	Role Types

	A role type is a type that represents a particular function, purpose, usage, or role of an object.
	In a NIEM-conformant schema, a RoleOf element is a reference element whose type is the base type of the role.
	[Rule 7-40] (REF, SUB, EXT)

	Within the schema, any element with a name beginning with the string RoleOf SHALL represent a base type, of which the containing type represents a role.
	Rationale
	A RoleOf element references its corresponding base element.  The RoleOf label on the reference element ensures that a role object is distinguishable from other objects and its link to the associated base is also distinguishable from the additional pr...
	Association Types

	In a NIEM-conformant schema, an association type is a type that establishes a relationship between objects, along with the properties of that relationship.  An association type provides a structure that does not establish existence of an object but i...
	In a NIEM-conformant schema, an association is an element whose type is an association type.
	[Rule 7-41] (REF, EXT)

	Within the schema, an association type SHALL be a complex type definition that either constitutes a NIEM-conformant component or for which there exists a NIEM-conformant component definition.  The NIEM-conformant component definition SHALL have one o...
	1. Has complex content, is based on the complex type structures:ComplexObjectType, and has application information appinfo:Base of structures:Association.
	2. Is a complex type that is derived from an association type, which is defined according to this rule.
	Rationale
	Associations within reference schemas, extensions schemas, and exchange schemas are easily identifiable as such and have a commonly defined base type.  For subset schemas, the NIEM-conformant definition may be located in a primary schema and then ide...
	[Rule 7-42] (REF, SUB, EXT)

	Given that an association type defines a relationship between a set of participants, within an association type definition, any element that represents a participant SHALL be a reference element.
	Rationale
	Associations are intended to relate objects defined elsewhere.  They are not intended to carry content of participant objects.
	Metadata Types

	A metadata type describes data about data, that is, information that is not descriptive of objects and their relationships, but is descriptive of the data itself.  It is useful to provide a general mechanism for data about data.  This provides requir...
	Within a NIEM-conformant schema, a metadata element is an element whose type is a metadata type.  There are specific limitations on the meaning of a metadata element in an instance; it does not establish existence of an object, nor is it a property o...
	[Rule 7-43] (REF, SUB, EXT)

	Within the schema, a metadata type SHALL contain elements appropriate for a specific class of data about data.
	[Rule 7-44] (REF, SUB, EXT)

	Within the schema, a metadata type and only a metadata type SHALL be derived directly from structures:MetadataType.
	Rationale
	A metadata type establishes a specific, named aggregation of data about data.  Any type derived from structures:MetadataType is a metadata type.  Metadata types should not be derived from other metadata types.  Such metadata types should be used as i...
	[Rule 7-45] (REF, EXT)

	Within the schema, a metadata type MAY have application information appinfo:AppliesTo, indicating the NIEM-conformant object, association, or external adapter types to which the metadata applies.
	[Rule 7-46] (REF, EXT)

	Within the schema, a metadata type that does not have application information appinfo:AppliesTo MAY be applied to any object type, association type, or external adapter type.
	Rationale
	Metadata may be constrained to be applicable to only specific types, or it may be defined to be applicable to any type.  The source of a piece of data and the security classification of a piece of data are examples of metadata that may be considered ...
	Augmentation Types

	An augmentation type is a complex type that provides a reusable block of data that may be added to object types or association types.
	An augmentation of a NIEM-conformant object type is a block of additional data added to an object type to carry additional data beyond that of the original object definition.
	[Rule 7-47] (REF, SUB, EXT)

	An augmentation type:
	1. SHALL be transitively derived from structures:AugmentationType.
	2. SHALL contain elements that represent properties to be applied to a base type.
	Rationale
	A base type is the type to which an augmentation is to be applied.  An augmentation may be applied to any number of types.  Base types are assigned by augmentation elements.
	[Rule 7-48] (REF, SUB, EXT)

	Within the schema, an augmentation element definition:
	1. SHALL have a type that is an augmentation type.
	2. SHALL use the substitutionGroup attribute such that it is transitively substitutable for the element structures:Augmentation.
	An element that is not an augmentation element SHALL NOT meet either of the above criteria.
	Rationale
	An augmentation is trivially identifiable as such.  The use of the common structures:Augmentation element allows message builders to optionally delay specifying augmentations to be applied to a type until runtime.
	[Rule 7-49] (REF, EXT)

	Within the schema, an element definition for an augmentation element MAY contain one or more instances of the element structures:AppliesTo as application information to specify types to which the augmentation element applies.
	[Rule 7-50] (REF, EXT)

	Within the schema, an element definition for an augmentation element that does not contain any instances of the element structures:AppliesTo MAY be applied to any object or association type.
	Rationale
	These rules allow schema builders to establish applicability for augmentations.  An augmentation may be applicable to specific types.
	Users who wish to apply an augmentation type to a given object type may do so by creating a new augmentation element, applicable to the object type.
	Component Usage
	[Rule 7-51] (REF, SUB, EXT)


	Any type definition referenced by a component within the schema MUST be from one of the following:
	1. The schema being defined.
	2. A namespace imported as NIEM-conformant.
	3. The XML Schema namespace.
	4. The structures namespace.
	Rationale
	NIEM-conformant schemas are based on other NIEM-conformant schemas and the supporting namespaces.  This simplifies processing and understanding of data.
	[Rule 7-52] (REF, SUB, EXT)

	Any element declaration referenced by a component within the schema MUST be from one of the following:
	1. The schema being defined.
	2. A namespace imported as NIEM-conformant.
	3. The structures namespace.
	4. An external namespace, in accordance with the rules for external schemas as specified by this specification.
	[Rule 7-53] (REF, SUB, EXT)

	Any attribute declaration referenced by a component within the schema MUST be from one of the following:
	1. The schema being defined.
	2. A namespace imported as NIEM-conformant.
	3. The structures namespace.
	4. The XML namespace.
	5. An external namespace, in accordance with the rules for external schemas as specified by this specification.
	Rationale
	NIEM-conformant schemas are based on other NIEM-conformant schemas.  All attributes and elements must be from NIEM-conformant schemas, the structures namespace, the XML namespace, or an external namespace.  This applies to elements referenced for sub...
	NIEM Structural Facilities

	The structures namespace is the namespace represented by the URI "http://niem.gov/niem/structures/2.0".
	[Rule 7-54] (REF, EXT)

	The schema MUST import the NIEM structures namespace.
	Rationale
	For uniformity, all NIEM-conformant schemas must import the structures namespace.
	[Rule 7-55] (REF, SUB, EXT, INS)

	The schema or instance MUST use content within the NIEM structures namespace as specified in this document and ONLY as specified by this document.
	Rationale
	This rule further enforces uniformity and consistency by mandating use of the NIEM structures namespace as is, without modification.  Users are not allowed to insert types, attributes, etc. that are not specified by this document (the NDR).
	Sequence ID
	[Rule 7-56] (REF, SUB, EXT)


	Within the schema, a complex type definition SHALL include the attribute structures:sequenceID if the order of an occurrence of the type, within its parent, relative to its siblings, is meaningful and pertinent and if the schema does not specify the ...
	Rationale
	This rule indicates that, if order is meaningful and the schema will not always represent the desired order, then data modelers need to include sequenceID  to allow the proper order to be represented in instances.
	Reference Elements

	1. Data objects are expressed as XML elements.
	2. XML elements contain attributes and other elements.
	• Circular relationships.  For example, suppose that object 1 has a relationship to object 2 and object 2 has a relationship to object 1.  Expressed via containment, this relationship would result in infinite recursive descent.
	• Repeated relationships.  For example, suppose object 1 has a relationship to object 2 and object 3 has a relationship to object 2.  Expressed via containment, this would result in a duplicate of object 2.
	A reference element is an element that refers to its value by a reference attribute instead of carrying it as content.
	[Rule 7-57] (REF, SUB, EXT)

	Within the schema, a reference element and only a reference element SHALL be defined to be of type structures:ReferenceType.
	Rationale
	Reference elements must be of the reference type, and elements of the reference type must be reference elements.  This rule ensures that users always create reference elements using structures:ReferenceType and cannot use structures:ReferenceType for...
	[Rule 7-58] (REF, SUB, EXT)

	Within the schema, a complex type SHALL NOT be defined such that an instance of that type owns the attribute structures:ref.
	Rationale
	The use of references is limited to reference elements.  This constrains the semantics and syntax of references within NIEM instances.  Only structures:ReferenceType may use structures:ref, which is the only means for referencing within NIEM-conforma...
	[Rule 7-59] (REF, SUB, EXT)

	Within the schema, any two elements of the form
	NCName
	and
	NCNameReference
	where the string value of NCName is the same in both forms, SHALL be defined to have identical semantics.  NIEM recognizes no difference in meaning between a reference element and an element that is not a reference element.
	Rationale
	NIEM-conformant data instances may use concrete data elements and reference elements as needed, to represent the meaning of the fundamental data.  There is no difference in meaning between reference and concrete data representations.  The two differe...
	Assertions that indicate "included" data is intrinsic, while referenced data is extrinsic, are not valid and are not applicable to NIEM-conformant data instances and data definitions.
	[Rule 7-60] (REF, EXT)

	Within the schema, if both elements NCName and NCNameReference exist, then the appinfo:ReferenceTarget of any NCNameReference element MUST be the type of the element NCName.
	Rationale
	By [Rule 7-59], any such pair of elements, NCName and NCNameReference, will have identical semantics.  This rule ensures that an NCNameReference element is documented to refer to the appropriate type (the type of the corresponding NCName element) and...
	Using External Schemas

	An external schema is any schema that is not a supporting schema and that is not NIEM-conformant.
	[Rule 7-61] (REF, EXT)

	Within the schema, an element xsd:import that imports a namespace defined by an external schema MUST have the application information appinfo:ConformantIndicator, with a value of false.
	Rationale
	Knowledge of the conformance of an imported schema allows processors to understand the semantics of referenced components, without additional processing.  Namespaces imported into NIEM-conformant schemas are assumed to be conformant unless otherwise ...
	[Rule 7-62] (REF, EXT)

	Within the schema, an element xsd:import that imports a namespace defined by an external schema MUST be a documented component.
	Rationale
	A NIEM-conformant schema has well-known documentation points.  Therefore, a schema that imports a NIEM-conformant namespace need not provide additional documentation.  However, when an external schema is imported, appropriate documentation must be pr...
	An adapter type is a NIEM-conformant type that adapts external components for use within NIEM.  An adapter type creates a new class of object that embodies a single concept composed of external components.  A NIEM-conformant schema defines an adapter...
	[Rule 7-63] (REF, EXT)

	Within the schema, an adapter type MUST have application information appinfo:ExternalAdapterTypeIndicator with a value of true.  A type that is not an adapter type SHALL NOT contain that indicator.
	Rationale
	This rule flags as external adapters those types that may contain external content.  This allows for easier processing.
	[Rule 7-64] (REF, SUB, EXT)

	Within the schema, an adapter type MUST be an immediate extension of type structures:ComplexObjectType.
	Rationale
	The adapter type must contain the content defined for any NIEM component.  The type structures:ComplexObjectType provides such content
	[Rule 7-65] (REF, SUB, EXT)

	Within the schema, an adapter type MUST be composed of only elements and attributes from an external standard.
	Rationale
	An adapter type should contain the information from an external standard to express a complete concept.  This expression should be composed of content entirely from an external schema.  Most likely, the external schema will be based on an external st...
	[Rule 7-66] (REF, EXT)

	Within the schema, an element reference used in an adapter type definition MUST be a documented component.
	[Rule 7-67] (REF, EXT)

	Within the schema, an attribute reference used in an adapter type definition MUST be a documented component.
	Rationale
	In normal (conformant) type definition, a reference to an attribute or element is a reference to a documented component.  Within an adapter type, the references to the attributes and elements being adapted are references to undocumented components.  ...
	[Rule 7-68] (REF, SUB, EXT)

	Within the schema, an adapter type MUST NOT be extended or restricted.
	Rationale
	Adapter types are meant to stand alone; each type expresses a single concept from an external schema, and adapter types are maintained in separate schemas that only contain adapter types. In this way, processors may easily switch modes, processing NI...
	NIEM Subset Schemas
	[Rule 7-69] (SUB)


	The value of the targetNamespace attribute owned by the xsd:schema document element of the subset schema must be the same as the value of the targetNamespace attribute owned by the xsd:schema document element of the reference schema.
	[Rule 7-70] (SUB)

	The schema must be constructed such that any instance that is XML Schema valid against the schema must also be XML Schema valid against the base schema.
	Rationale
	A subset schema is a briefer, abridged form of its base schema.  The subset schema is intended to stand in the place of the base schema for the purpose of XML Schema validation in many situations.  As such, it is imperative that the subset schema sus...
	Container Elements

	XML Instance Rules
	Instance Validation
	[Rule 8-1] (INS)


	The  XML document MUST be schema-valid, assessed with reference to the schema composed of the reference schemas, extension schemas, exchange schemas, utility schemas, and external schemas for the relevant namespaces.
	Rationale
	The schemas that define the exchange must be authoritative.  Each is the reference schema, extension schema, or exchange schema for the namespace it defines.  Application developers may use other schemas for various purposes, but for the purposes of ...
	This rule should not be construed to mean that XML validation must be performed on all XML instances as they are served or consumed; only that the XML instances validate if XML validation is performed.  The XML Schema component definitions specify XM...
	Instance Meaning
	[Rule 8-2] (INS)


	Within the instance, the meaning of an element with no content is that additional properties are not asserted.  There SHALL NOT be additional meaning interpreted for an element with no content.
	Rationale
	Elements without content only show a lack of asserted information.  That is, all that is asserted is what is explicitly stated, through a combination of XML instance data and its schema.  Data that is not present makes no claims.  It may be absent du...
	Component Representation
	[Rule 8-3] (INS)


	Within an element instance, there SHALL NOT be any difference in meaning between a property asserted via element containment and a property asserted by element reference, except as explicitly described by the semantics of the elements involved.
	Rationale
	There is no difference in meaning between relationships established by containment and those established by reference.  They are simply two mechanisms for expressing connections between objects.  Neither mechanism implies that properties are intrinsi...
	[Rule 8-4] (INS)

	Given that the IDREF that is the value of an attribute structures:ref matches the value of an ID attribute on some element in the XML document, that ID attribute must be an occurrence of the attribute structures:id.
	Rationale
	This states that in NIEM-conformant content, structures:ref attributes must refer to structures:id attributes.  By [XML], an IDREF is required to reference an ID.  This rule ensures that the target of a reference is a NIEM ID for easier processing of...
	[Rule 8-5] (INS)

	Within an element instance, given that a reference element is restricted to a target type T, any attribute structures:ref MUST reference an element that has a type definition of type T or that is derived from type T.
	Rationale
	This rule says that the type of the object pointed to by a structures:ref  attribute must be of a type specified by the reference element definition.  The restriction of types is defined in the application information of the reference element definit...
	Component Ordering
	[Rule 8-6] (INS)


	The order of elements that are children of an element SHALL be presented as if their sequential order is as follows:
	1. First, elements owning an attribute structures:sequenceID, in the order that would be yielded with their sequence IDs sorted via sort element as defined by [XSLT], with a data type of number and an order of ascending.
	2. Following those elements, the remaining elements, in the order in which they occur within the XML instance.
	Rationale
	Because of NIEM's use of structured, defined types and its use of xsd:sequence, as well as various representation mechanisms, the order of data within an XML instance may require more precise definition and may vary from instance to instance.  The tr...
	In this definition, the term "presented" may mean presentation to the user, reports, or transfer to other data systems.  It is meaningful only when the order of appearance of items within a sequence is expressed.  Such an order is only the default fo...
	[Rule 8-7] (REF, EXT, INS)

	Within a schema or instance, the attribute structures:sequenceID SHALL NOT be interpreted as meaningful beyond an indicator of sequential order of an object relative to its siblings.
	Rationale
	Siblings of a data item are items that have the same parent.  Note that, using the reference and relationships mechanisms, data objects may have multiple parents.  The sequenceID is truly metadata, helping to express the structure of the data rather ...
	Instance Metadata

	• Metadata m1 asserts Adam Barber gave the name.
	• Metadata m2 asserts the name and the birth date were reported on 4/26/2005.
	• Link metadata m3 asserts a 25% probability that the name goes with the person.
	• Metadata objects may appear outside the data they describe.
	• Metadata objects may be reused.
	• Data may refer to more than one metadata object.
	• Metadata pertains to an object or simple content, while link metadata pertains to the relationship between objects.
	[Rule 8-8] (INS)

	Within an element instance, when an object O links to a metadata object via an attribute structures:metadata, the information in the metadata object SHALL be applied to the object O.
	[Rule 8-9] (INS)

	Within an element instance, when an object O1 contains an element E, with content object O2 or with a reference to object O2, and O2 links to a metadata object via an attribute structures:linkMetadata, the information in the metadata object SHALL be ...
	Rationale
	These two rules define the meaning of metadata:
	• structures:metadata applies metadata to an object.
	• structures:linkMetadata applies metadata to a relationship between two objects.
	[Rule 8-10] (INS)

	Given that each IDREF in the value of an attribute structures:metadata  must match the value of an ID attribute on some element in the XML document, that ID attribute MUST be an occurrence of the attribute structures:id.
	[Rule 8-11] (INS)

	Each element that an attribute structures:metadata references MUST have a type definition that is derived from structures:MetadataType.
	[Rule 8-12] (INS)

	Given that each IDREF in the value of an attribute structures:linkMetadata  must match the value of an ID attribute on some element in the XML document, that ID attribute MUST be an occurrence of the attribute structures:id.
	[Rule 8-13] (INS)

	Each element that an attribute structures:linkMetadata references MUST have a type definition that is derived from structures:MetadataType.
	Rationale
	All structures:metadata and structures:linkMetadata attributes must refer to metadata objects, and the reference to that object must be established using the structures:id attribute, to facilitate processing of XML documents.
	[Rule 8-14] (INS)

	Given that an element information item E has a type definition of some type T, each metadata type that is the type definition of an element information item referenced by an attribute structures:metadata or structures:linkMetadata on element E MUST b...
	Rationale
	The applicability is determined by structures:AppliesTo application information of the metadata type definition.  The instances must correspond to the types specified by the metadata type definition.
	Naming Rules
	Extension of XSD Namespace Simple Types
	[Rule 9-1] (REF, SUB, EXT)


	Within the schema, a complex type that is a direct extension of a simple type from the XML Schema namespace simple type MAY use the same local name as the simple type if and only if the extension adds no content other than the attribute group structu...
	Rationale
	It is useful to build complex type bases for further extension.  The NIEM distribution proxy schema xsd.xsd provides complex type bases for some of the simple types in the XML Schema namespace.  However, the complex types in this proxy schema reuse t...
	Usage of English
	[Rule 9-2] (REF, SUB, EXT)


	The name of any XML Schema component defined by the schema SHALL be composed of words from the English language, using the prevalent U.S. spelling, as provided by [OED].
	Rationale
	The English language has many spelling variations for the same word. For example, American English “program” has a corresponding British spelling “programme.” This variation has the potential to cause interoperability problems when XML components are...
	Characters in Names
	[Rule 9-3] (REF, SUB, EXT)


	The name of any XML Schema component defined by the schema SHALL contain only the following characters:
	• Upper-case letters ('A'-'Z').
	• Lower-case letters ('a'-'z').
	• Digits ('0'-'9').
	• Hyphen ('-').
	Other characters, such as the underscore ('_') character and the period ('.') character SHALL NOT appear in component names in NIEM-conformant schemas.
	[Rule 9-4] (REF, SUB, EXT)

	The hyphen character ('-') MAY appear in component names only when used as a separator between parts of a single word, phrase, or value, which would otherwise be incomprehensible without the use of a separator.
	Rationale
	Names of standards and specifications, in particular, tend to consist of series of discrete numbers.  Such names require some explicit separator to keep the values from running together.  The separator used within NIEM is the hyphen.
	Character Case
	[Rule 9-5] (REF, SUB, EXT)


	Within the schema, any attribute declaration SHALL have a name that begins with a lower-case letter ('a'-'z').
	[Rule 9-6] (REF, SUB, EXT)

	Within the schema, any XML Schema component other than an attribute declaration SHALL have a name that begins with an upper-case letter ('A'-'Z').
	[Rule 9-7] (REF, SUB, EXT)

	The name of any XML Schema component defined by the schema SHALL use the camel case formatting convention.
	Rationale
	The foregoing rules establish lowerCamelCase for all NIEM components that are XML attributes and UpperCamelCase for all NIEM components that are types, elements, or groups.
	Use of Acronyms and Abbreviations
	[Rule 9-8] (REF, SUB, EXT)


	The schema MUST consistently use approved acronyms, abbreviations, and word truncations within defined names.  The approved shortened forms are defined in Table 9-1:  Abbreviations Used in NIEM Core Names .
	Consistent, controlled, and documented abridged terms that are used frequently and/or tend to be lengthy can support readability, clarity, and reduction of name length.
	Word Forms
	[Rule 9-9] (REF, SUB, EXT)


	A noun used as a term in the name of an XML Schema component MUST be in singular form unless the concept itself is plural.
	[Rule 9-10] (REF, SUB, EXT)

	A verb used as a term in the name of an XML Schema component MUST be used in the present tense unless the concept itself is past tense.
	[Rule 9-11] (REF, SUB, EXT)

	Articles, conjunctions, and prepositions SHALL NOT be used in NIEM component names except where they are required for clarity or by standard convention.
	Rationale
	Articles (e.g., a, an, the), conjunctions (e.g., and, or, but), and prepositions (e.g., at, by, for, from, in, of, to) are all disallowed in NIEM component names, unless they are required.  For example, PowerOfAttorneyCode requires the preposition.  ...
	Name Generation
	[Rule 9-12] (REF, SUB, EXT)


	Except as specified elsewhere in this document, any element or attribute defined within the schema SHALL have a name that takes the form:
	• Object-class qualifier terms (0 or more).
	• An object class term (1).
	• Property qualifier terms (0 or more).
	• A property term (1).
	• Representation qualifier terms (0 or more).
	• A representation term (1).
	Rationale
	Consistent naming rules are helpful for users who wish to understand components with which they are unfamiliar, as well as for users to find components with known semantics.  This rule establishes the basic structure for an element or attribute name,...
	Object-Class Term
	[Rule 9-13] (REF, SUB, EXT)


	The object-class term of a NIEM component SHALL consist of a term identifying a category of concrete concepts or entities.
	Rationale
	The object-class term indicates the object category that this data component describes or represents.  This term provides valuable context and narrows the scope of the component to an actual class of things or concepts.
	Example
	Concept term: Activity
	Entity term: Vehicle
	Property Term
	[Rule 9-14] (REF, SUB, EXT)


	A property term SHALL describe or represent a characteristic or subpart of an entity or concept.
	Rationale
	The property term describes the central meaning of the data component.
	Qualifier Terms
	[Rule 9-15] (REF, SUB, EXT)


	Multiple qualifier terms MAY be used within a component name as necessary to ensure clarity and uniqueness within its namespace and usage context.
	[Rule 9-16] (REF, SUB, EXT)

	The number of qualifier terms SHOULD be limited to the absolute minimum required to make the component name unique and understandable.
	[Rule 9-17] (REF, SUB, EXT)

	The order of qualifiers SHALL NOT be used to differentiate names.
	Rationale
	Very large vocabularies may have many similar and closely related properties and concepts.  The use of object, property, and representation terms alone is often not sufficient to construct meaningful names that can uniquely distinguish such component...
	Representation Term

	1. It can indicate the style of component.  For example, types are clearly labeled with the representation term Type.
	2. It helps prevent name conflicts and confusion.  For example, elements and types may not be given the same name.
	3. It indicates the nature of the value carried by element.  Labeling elements and attributes with a notional indicator of the content eases discovery and comprehension.
	[Rule 9-18] (REF, EXT)

	If any word in the representation term is redundant with any word in the property term, one occurrence SHOULD be deleted.
	This rule, carried over from 11179, is designed to prevent repeating terms unnecessarily within component names.  For example, this rule allows designers to avoid naming an element "PersonFirstNameName."
	[Rule 9-19] (REF, SUB, EXT)

	Within the schema, the name of an element declaration that is of simple content MUST use a representation term found in Table 9-2:  Representation Terms.
	[Rule 9-20] (REF, SUB, EXT)

	Within the schema, the name of an element declaration that is of complex content, and that corresponds to a concept listed in Table 9-2:  Representation Terms, MUST use a representation term from that table.
	[Rule 9-21] (REF, SUB, EXT)

	Within the schema, the name of an element declaration that is of complex content and that does not correspond to a concept listed in Table 9-2:  Representation Terms MUST NOT use a representation term.
	[Rule 9-22] (REF, SUB, EXT)

	Within the schema, the name of an attribute declaration MUST use a representation term from Table 9-2:  Representation Terms.
	Rationale
	An element that represents a value listed in the table should have a representation term. It should do so even if its type is complex with multiple parts.  For example, a type with multiple fields may represent a sound binary, a date, or a name.
	NIEM Type Names
	All Type Components
	[Rule 9-23] (REF, SUB, EXT)



	Within the schema, the name of any type definition MUST use the representation term Type.
	Rationale
	Using the representation term Type immediately identifies XML types in a NIEM-conformant schema and prevents naming collisions with corresponding XML elements and attributes.
	Simple Type Components
	[Rule 9-24] (REF, SUB, EXT)


	Within the schema, the name of any simple type definition SHALL use the representation term qualifier Simple.  This qualifier SHALL appear after any other representation term qualifiers.
	Rationale
	Specific uses of type definitions have similar syntax but very different effects on data definitions.  Schemas that clearly identify complex and simple type definitions are easier to understand without tool support.  This rule ensures that names of s...
	Code Type Components

	A code type is a simple type schema component definition that contains multiple xsd:enumeration facets.
	[Rule 9-25] (REF, SUB, EXT)

	Within the schema, the name of any code type SHALL use the representation term qualifier Code.
	Rationale
	Using the qualifier Code (e.g. CodeType, CodeSimpleType) immediately identifies a type as representing a fixed list of codes.  These types may be handled in specific ways, as lists of codes are expected to have their own lifecycles, including version...
	[Rule 9-26] (REF, SUB, EXT)

	Within the schema, any type definition which has a base type definition of a code type or which is transitively based on a code type SHALL have a name that uses the representation term qualifier Code.
	Rationale
	This expands the use of the representation term qualifier Code to any type based on a code list.
	Association Type Components
	[Rule 9-27] (REF, SUB, EXT)


	Within the schema, any association type SHALL have a name that uses the representation term qualifier Association.  Types other than association types SHALL NOT use the representation term qualifier Association.
	Rationale
	Using the qualifier Association immediately identifies a type as representing an association.
	Augmentation Type Components
	[Rule 9-28] (REF, SUB, EXT)


	Within the schema, any augmentation type SHALL have a name that uses the representation term qualifier Augmentation.  Types other than augmentation types SHALL NOT use the representation term qualifier Augmentation.
	Rationale
	Using the qualifier Augmentation immediately identifies a type as representing an augmentation.
	Metadata Type Components
	[Rule 9-29] (REF, SUB, EXT)


	Within the schema, any metadata type SHALL have a name that uses the representation term qualifier Metadata.  Types other than metadata types SHALL NOT use the representation term qualifier Metadata.
	Rationale
	Using the qualifier Metadata immediately identifies a type as representing metadata.
	NIEM Property Names
	Attribute Group Names
	[Rule 9-30] (REF, SUB, EXT)



	Within the schema, the name of any attribute group definition schema component SHALL use the representation term AttributeGroup.
	Rationale
	This clearly identifies attribute groups and partitions their names from the names of other types of schema components.
	Reference Names
	[Rule 9-31] (REF, SUB, EXT)


	Within the schema, the name of any reference element SHALL use the representation term suffix Reference.
	Rationale
	Reference elements are identical in semantics to elements that are not by reference.  However, they refer to their values by a reference attribute instead of carrying it as content of the XML element.  The use of a suffix helps indicate that the elem...
	Note that the use of the representation term suffix is one of the situations in which there is a slight divergence from the general rule for name generation as discussed in [Rule 9-12].
	Association Names
	[Rule 9-32] (REF, SUB, EXT)


	Within the schema, the name of an association element SHALL use the representation term qualifier Association.
	Rationale
	Using the qualifier Association  immediately identifies an element as representing an association.
	Augmentation Names
	[Rule 9-33] (REF, SUB, EXT)


	Within the schema, the name of an augmentation element SHALL use the representation term Augmentation.
	Rationale
	Using the qualifier Augmentation immediately identifies an element as representing an augmentation.
	Metadata Names
	[Rule 9-34] (REF, SUB, EXT)


	Within the schema, the name of a metadata element SHALL use the representation term Metadata.
	Rationale
	Using the qualifier Metadata immediately identifies an element as representing metadata.
	Role Names
	[Rule 9-35] (REF, SUB, EXT)


	Within the schema, the name of a role SHALL use the property term RoleOf.
	Rationale
	Using the property term RoleOf  immediately identifies an element as representing a role.
	NIEM Overview

	• NIEM reference schemas:  Schemas containing content created or approved by the NIEM steering committees are periodically released in schema distributions.  The structure and content of such distributions are not specified in this document.  This doc...
	• NIEM support schemas:  NIEM includes two special schemas, the appinfo and the structures schemas, for annotating and structuring NIEM-conformant schemas.
	• Extension Schema:  a NIEM-conformant schema that adds domain- or application-specific content to the base NIEM model.
	• Exchange Schema:  a NIEM-conformant schema that specifies a document in a  particular exchange.
	• Subset Schema:  a profile of a NIEM-conformant schema, derived from a reference schema, but which specifies instances that require only a portion of the reference schema.
	• Constraint Schema:  a schema which adds additional constraints to NIEM-conformant instances, but which is assumed to validate in concert with existing NIEM-conformant or subset schemas.  A constraint schema need not validate constraints that are app...
	Name Syntax for Special Components

	Table B-1:  Name Syntax for Special Components
	Supporting Schemas

	The appinfo namespace
	Discussion
	The namespace for the appinfo namespace is http://niem.gov/niem/appinfo/2.0.
	Discussion
	The Resource element provides a method for application information to define a name within a schema, without the name being bound to a schema component.  This is used by the structures schema to define names for structures:Object and structures:Assoc...
	Discussion
	The Deprecated element provides a method for identifying components as being deprecated.  A deprecated component is one which is provided but whose use is not recommended.
	Discussion
	The Base element provides a mechanism for indicating base types and base elements in schema for the cases in which XML Schema mechanisms are insufficient.  For example, it is used to indicate Object or Association bases.
	Discussion
	The ReferenceTarget element indicates a NIEM type which may be a target (that is, a destination) of a NIEM reference element.  It may be used in combinations to indicate a set of valid types.
	Discussion
	The AppliesTo element is used in two ways.  First, it indicates the set of types to which a metadata type may be applied.  Second, it indicates the set of types to which an augmentation element may be applied.
	Discussion
	The ConformantIndicator element may be used in two ways.  First, it is included as application information for a schema document element to indicate that the schema is NIEM-conformant.  Second, it is used as application information of a namespace imp...
	Discussion
	The ExternalAdapterTypeIndicator element indicates that a complex type is an external adapter type.  Such a type is one composed of elements and attributes from non-NIEM-conformant schemas.  The indicator allows schema processors to switch to alterna...
	The structures schema
	Discussion
	The target namespace for the structures schema is http://niem.gov/niem/structures/2.0.
	Discussion
	The structures schema uses components from the appinfo namespace.
	Discussion
	The Object resource defines an identifier that acts as a conceptual base for objects in NIEM-conformant schemas.
	Discussion
	The Association resource defines an identifier that acts as a conceptual base for association in NIEM-conformant schemas.
	Discussion
	The id attribute is used to define XML IDs for NIEM objects.  These IDs may be targets of reference elements, metadata attributes, and link metadata attributes.
	Discussion
	The linkMetadata attribute allows an element to point to metadata that affects the relationship between the context and the value of the object.
	Discussion
	The attribute metadata allows an object to point to metadata that affects itself.
	Discussion
	The ref attribute is used by reference elements in NIEM to refer to an object via an ID reference, rather than including the object itself as element content.
	Discussion
	The sequenceID attribute allows a series of elements to define a sequence for content that does not correspond to the order of element declarations within a type.  This attribute may override the sequence of elements appearing within an instance.
	Discussion
	The SimpleObjectAttributeGroup attribute group provides a collection of attributes that are appropriate for definition of object types.
	Discussion
	The Augmentation element provides a substitution group head for augmentations.  The designer of a message or object may use this element within an object definition.  This will allow the selection of augmentations dynamically, at run time (or at leas...
	Discussion
	The Metadata element provides a substitution group head for metadata.  Like the substitution group head for augmentations, this allows selection of metadata to be decided late in message creation, rather than at schema authoring time.  This element m...
	Discussion
	The AugmentationType type is a base type for all augmentations.  An augmentation may have metadata and an ID but may not have link metadata, as it does not establish a relationship between its value and its context.  The individual element contents o...
	Discussion
	The ComplexObjectType type provides a base class for object definition, association definitions, and external adapter type definitions.  An instance of one of these types may have an ID.  It may have metadata as it establishes the existence of an obj...
	Discussion
	The MetadataType type is a base class for metadata type definition.  This type provides only an ID, as the metadata may be referenced.  It does not itself have metadata and does not have link metadata.
	Discussion
	The ReferenceType type is the type of all reference elements within NIEM-conformant schemas.  This type provides a reference attribute to reference an object defined elsewhere.  It includes an ID, as the link established by a reference element may ne...
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